极坐标方程4sin^2θ=3表示的曲线是?
1个回答
展开全部
极坐标方程:x = ρ * cos θ, y = ρ * sin θ. => x / y = cot θ
(sinθ)^2 = 1 / (1 + (cotθ)^2) = 1 / (1 + x^2 / y^2) = y^2 / (x^2 + y^2)
4(sinθ)^2 = 3 => 4y^2 / (x^2 + y^2) = 3 =>
4y^2 = 3y^2 + 3x^2 => y^2 = 3x^2 => y = ±√3 x.
∴代表两条过原点的直线.
(sinθ)^2 = 1 / (1 + (cotθ)^2) = 1 / (1 + x^2 / y^2) = y^2 / (x^2 + y^2)
4(sinθ)^2 = 3 => 4y^2 / (x^2 + y^2) = 3 =>
4y^2 = 3y^2 + 3x^2 => y^2 = 3x^2 => y = ±√3 x.
∴代表两条过原点的直线.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询