为什么1+2=3?

自心何H
2012-06-30 · TA获得超过17.5万个赞
知道顶级答主
回答量:6.8万
采纳率:37%
帮助的人:3.9亿
展开全部
1+2=?
中国数学家陈景润于1966年证明的,称为陈氏定理:“任何充分大的偶数都是一个质数与一个自然数之和,而后者仅仅是两个质数的乘积。”通常都简称这个结果为大偶数可表示为 “1 + 2”的形式。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
名字叫难忘啊DM
高粉答主

2020-01-11 · 醉心答题,欢迎关注
知道答主
回答量:5.8万
采纳率:3%
帮助的人:2839万
展开全部
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
hpyunyun
2012-06-30 · TA获得超过3225个赞
知道小有建树答主
回答量:1137
采纳率:50%
帮助的人:866万
展开全部
一、证明方法
设N为任一大于6的偶数,Gn为不大于N/2的正整数,则有:
N=(N-Gn)+Gn (1)
如果N-Gn和Gn同时不能被不大于√N的所有质数整除,则N-Gn和Gn同时为奇质数。设Gp(N)表示N-Gp和Gp同时为奇质数的奇质数Gp的个数,那么,只要证明:
当N>M时,有Gp(N)>1,则哥德巴赫猜想当N>M时成立。

二、双数筛法
设Gn为1到N/2的自然数,Pi为不大于√N的奇质数,则Gn所对应的自然数的总个数为N/2。如N-Gn和Gn这两个数中任一个数被奇质数Pi整除,则筛去该Gn所对应的自然数,由此,被奇质数Pi筛去的Gn所对应的自然数的个数不大于INT(N/Pi),则剩下的Gn所对应的自然数的个数不小于N/2-INT(N/Pi),与Gn所对应的自然数的总个数之比为R(Pi):
R(Pi)≥(N/2-INT(N/Pi))/(N/2)≥(1-2/Pi)×INT((N/2)/Pi)/((N/2)/Pi) (2)

三、估计公式
由于所有质数都是互质的,可应用集合论中独立事件的交积公式,由公式(2)可得任一偶数表为两个奇质数之和的表法的数量的估计公式:
Gp(N)≥(N/4-1)×∏R(Pi)-1≥(N/4-1)×∏(1-2/Pi)×∏(1-2Pi/N)-1 (3)
式中∏R(Pi)表示所有不大于√N的奇质数所对应的比值计算式的连乘。

四、简单证明
当偶数N≥10000时,由公式(3)可得:
Gp(N)≥(N/2-2-∑Pi)×(1-1/2)×∏(1-2/Pi)-1
≥(N-2×√N)/8×(1/√N)-1=(√N-2)/8-1≥11>1 (4)
公式(4)表明:每一个大于10000的偶数表为两个奇质数之和至少有11种表法。
经验证明:每一个大于4且不大于10000的偶数都可表为两个奇质数之和。
最后结论:每一个大于4的偶数都可表为两个奇质数之和
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式