如图如图,在平面直角坐标系中,矩形OACB的顶点O在坐标原点,顶点A、B分别在
(1)若E为边OA上的一个动点,是否存在一点E使△CDE的周长取得最小值?若存在,求点E的坐标并证明;若不存在,请说明理由.(2)若E、F为边OA上的两个动点,且EF=2...
(1)若E为边OA上的一个动点,是否存在一点E使△CDE的周长取得最小值?若存在,求点E的坐标并证明;若不存在,请说明理由.(2)若E、F为边OA上的两个动点,且EF=2,当四边形CDEF的周长最小时,求点E、F的坐标.
展开
东莞大凡
2024-08-07 广告
2024-08-07 广告
作为东莞市大凡光学科技有限公司的一员,我们深知Matlab圆点标定板在相机标定中的重要性。该标定板通过均匀分布的圆点,帮助精确计算相机参数,优化成像效果。Matlab强大的编程功能,使得我们能够灵活设计标定板,调整圆点大小、数量和分布,以满...
点击进入详情页
本回答由东莞大凡提供
2012-10-03
展开全部
解:(1)作点D关于x轴的对称点D′,连接CD′与x轴交于点E.
∵OB=4,OA=3,D是OB的中点,
∴OD=2,则D的坐标是(0,2),C的坐标是(3,4).
∴D′的坐标是(0,-2).
设直线CD′的解析式是:y=kx+b.
则
3k+b=4b=-2
.
解得:
k=2b=-2
则直线的解析式是:y=2x-2.
在解析式中,令y=0,得到2x-2=0,
解得x=1.
则E的坐标为(1,0);
(2)作出D的对称点D′,把D′向右平移两个单位长度到M,则连接CM,与x轴的交点就是F,F点向左平移2个单位长度就是E.
∵D′的坐标是(0,-2),
∴M的坐标是(2,-2).
设直线CM的解析式是:y=kx+b.
则
3k+b=4,2k+b=-2
解得:
k=6b=-14
则直线的解析式是:y=6x-14.
在y=6x-14中,令y=0,
解得x=7/3
∴点F的坐标为(7/3,0)
则点E的坐标为(1/3,o)
∵OB=4,OA=3,D是OB的中点,
∴OD=2,则D的坐标是(0,2),C的坐标是(3,4).
∴D′的坐标是(0,-2).
设直线CD′的解析式是:y=kx+b.
则
3k+b=4b=-2
.
解得:
k=2b=-2
则直线的解析式是:y=2x-2.
在解析式中,令y=0,得到2x-2=0,
解得x=1.
则E的坐标为(1,0);
(2)作出D的对称点D′,把D′向右平移两个单位长度到M,则连接CM,与x轴的交点就是F,F点向左平移2个单位长度就是E.
∵D′的坐标是(0,-2),
∴M的坐标是(2,-2).
设直线CM的解析式是:y=kx+b.
则
3k+b=4,2k+b=-2
解得:
k=6b=-14
则直线的解析式是:y=6x-14.
在y=6x-14中,令y=0,
解得x=7/3
∴点F的坐标为(7/3,0)
则点E的坐标为(1/3,o)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
(1)首先找出D关于x轴的对称点D',然后连接CD',CD'与x轴的交点就是E点
两点之间,线段最短
(2)第二个嘛,我觉得可是设E点坐标为(x,o),F(x+2,0),然后C、D'坐标已知,可以得出CE、D'E、D'F、CF的长度,加起来就是周长,然后对这个函数求导,求出极小值及最小值
两点之间,线段最短
(2)第二个嘛,我觉得可是设E点坐标为(x,o),F(x+2,0),然后C、D'坐标已知,可以得出CE、D'E、D'F、CF的长度,加起来就是周长,然后对这个函数求导,求出极小值及最小值
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询