如图所示在正方形ABCD中,M是AB的中点,MN⊥MD,BN平分∠CBE,求证:MD=MN
3个回答
展开全部
证明:取AD中点H,连接MH
则DH=1/2AD=1/2AB=MB
∠DHM=180-∠AHB=180-45=135
∠MBN=90+1/2*90=135
所以∠DHM=∠MBN
因为MN⊥MD
所以∠AMD+∠NMB=90
又因为∠AMD+∠ADM=90
所以∠ADM=∠NMB
在△DHM与△MNB中
∠DHM=∠MBN,DH=MB,∠ADM=∠NMB
所以△DHM≌△MNB
所以MD=MN
则DH=1/2AD=1/2AB=MB
∠DHM=180-∠AHB=180-45=135
∠MBN=90+1/2*90=135
所以∠DHM=∠MBN
因为MN⊥MD
所以∠AMD+∠NMB=90
又因为∠AMD+∠ADM=90
所以∠ADM=∠NMB
在△DHM与△MNB中
∠DHM=∠MBN,DH=MB,∠ADM=∠NMB
所以△DHM≌△MNB
所以MD=MN
来自:求助得到的回答
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
取AD中点Q,连接MQ
只要证明MQD与NBM全等即可。
角边角:QDM=BMN,
DQ=MB
DQM=MBN
细节你自己一想便知。
请问,你这图,怎么画的?为什么我在知道画不了图?
只要证明MQD与NBM全等即可。
角边角:QDM=BMN,
DQ=MB
DQM=MBN
细节你自己一想便知。
请问,你这图,怎么画的?为什么我在知道画不了图?
追问
我是在office里面先画好了然后放进来的
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询