3个回答
展开全部
因为x趋于0,所以lim[(1+x)^(1/x)]=lim(1+x)^∞=e
解题过程如下:
原式 = lim (e^(ln(1+x)/x) -e)/x
=lim e(e^(ln(1+x)/x - 1) -1 ) /x
=lim e(ln(1+x)/x -1)/x
=e lim (ln(1+x)-x)/x²
=e lim (1/(1+x)-1) / 2x
=e lim -x/(2x(1+x))
=lim[(1+x)^(1/x)]
=lim(1+x)^∞
=e
扩展资料
求函数极限的方法:
利用函数连续性,直接将趋向值带入函数自变量中,此时要要求分母不能为0。
当分母等于零时,就不能将趋向值直接代入分母,因式分解,通过约分使分母不会为零。若分母出现根号,可以配一个因子使根号去除。
如果趋向于无穷,分子分母可以同时除以自变量的最高次方。(通常会用到这个定理:无穷大的倒数为无穷小)。
采用洛必达法则求极限,当遇到分式0/0或者∞/∞时可以采用洛必达,其他形式也可以通过变换成此形式。符合形式的分式的极限等于分式的分子分母同时求导。
展开全部
不用洛必达法则
令x = - y
lim(x→0) (1 - 1/x)^x
= lim(y→0) (1 + 1/y)^(- y)
= 1/lim(y→0) (1 + 1/y)^y
= 1/e
令x = - y
lim(x→0) (1 - 1/x)^x
= lim(y→0) (1 + 1/y)^(- y)
= 1/lim(y→0) (1 + 1/y)^y
= 1/e
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询