设直线系M:xcosθ+(y-2)sinθ=1(0≤θ≤2π),对于下列四个命题:
设直线系M:xcosθ+(y-2)sinθ=1(0≤θ≤2π),对于下列四个命题:(1)M中所有直线均经过一个定点;(2)存在定点P不在M中的任一条直线上;(3)对于任意...
设直线系M:xcosθ+(y-2)sinθ=1(0≤θ≤2π),对于下列四个命题:
(1)M中所有直线均经过一个定点;(2)存在定点P不在M中的任一条直线上;
(3)对于任意正整数n(n≥3),存在正n边形,其所有边均在M中的直线上;
(4)M中的直线所能围成的正三角形面积都相等.
其中真命题的序号是 展开
(1)M中所有直线均经过一个定点;(2)存在定点P不在M中的任一条直线上;
(3)对于任意正整数n(n≥3),存在正n边形,其所有边均在M中的直线上;
(4)M中的直线所能围成的正三角形面积都相等.
其中真命题的序号是 展开
1个回答
展开全部
解:
由 直线系M:xcosθ+(y-2)sinθ=1(0≤θ≤2π),可令 x=cosθ y=2+sinθ ,
消去θ可得 x2+(y-2)2=1,故 直线系M表示圆 x2+(y-2)2=1 的切线的集合,
故(1)不正确.
因为对任意θ,存在定点(0,2)不在直线系M中的任意一条上,故(2)正确.
由于圆 x2+(y-2)2=1 的外且正n 边形,所有的边都在直线系M中,故(3)正确.
M中的直线所能围成的正三角形的边长不一等,故它们的面积不一定相等,
如图中等边三角形ABC和 ADE面积不相等,
故(4)不正确.
综上,正确的命题是 (2)、(3),故答案为 (2)、(3).
由 直线系M:xcosθ+(y-2)sinθ=1(0≤θ≤2π),可令 x=cosθ y=2+sinθ ,
消去θ可得 x2+(y-2)2=1,故 直线系M表示圆 x2+(y-2)2=1 的切线的集合,
故(1)不正确.
因为对任意θ,存在定点(0,2)不在直线系M中的任意一条上,故(2)正确.
由于圆 x2+(y-2)2=1 的外且正n 边形,所有的边都在直线系M中,故(3)正确.
M中的直线所能围成的正三角形的边长不一等,故它们的面积不一定相等,
如图中等边三角形ABC和 ADE面积不相等,
故(4)不正确.
综上,正确的命题是 (2)、(3),故答案为 (2)、(3).
厦门君韦信息技术
2024-11-18 广告
2024-11-18 广告
厦门君韦信息技术有限公司成立于2015年,是一家致力于提供专业服务的电子元件分销商,具有业界先进的质量和可靠性、强大的搜索供应实力、专业的服务能力。厦门君韦主要深耕于图像识别技术研究与开发,同时助推于通信、工控、电力、汽车等行业客户的供应链...
点击进入详情页
本回答由厦门君韦信息技术提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询