f(x)=ax-1-lnx (a属于R)讨论f(x)在定义域内的极值点
2个回答
展开全部
解:
函数f(x)的定义域为(0,+∞).f′(x)=a-1/x .
①当a≤0时,f′(x)<0在(0,+∞)上恒成立,函数 在(0,+∞)单调递减,
∴在(0,+∞)上没有极值点;
②当a>0时,由f′(x)>0得x>1/a ,f′(x)<0得x<1/a .f′(x)=0得x=1/a .
∴在(0,1/a )上递减,在(1/a ,+∞)上递增,即在x=1/a .处有极小值.
【希望可以帮到你! 祝学习快乐! O(∩_∩)O~】
函数f(x)的定义域为(0,+∞).f′(x)=a-1/x .
①当a≤0时,f′(x)<0在(0,+∞)上恒成立,函数 在(0,+∞)单调递减,
∴在(0,+∞)上没有极值点;
②当a>0时,由f′(x)>0得x>1/a ,f′(x)<0得x<1/a .f′(x)=0得x=1/a .
∴在(0,1/a )上递减,在(1/a ,+∞)上递增,即在x=1/a .处有极小值.
【希望可以帮到你! 祝学习快乐! O(∩_∩)O~】
追问
系握!我傻佐甜!我也是这样想不过纠结在了a≤0时,f′(x)<0,刚刚在算一遍。。可以了
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询