判断函数在x=0处的连续性和可导性!
x!=0时:y=x^2sin(1/x);x=0时:y=0;判断此分段函数在x=0处的连续性和可导性。...
x!=0时:y=x^2sin(1/x);
x=0时:y=0;
判断此分段函数在x=0处的连续性和可导性。 展开
x=0时:y=0;
判断此分段函数在x=0处的连续性和可导性。 展开
3个回答
展开全部
连续性:
对任意的小量t>0,存在s>0,s<t^0.5,当|x|<s时,我们有
|x^2sin(1/x)|<=x^2<s^2<t。
因此,此函数在x=0连续。
可导性:即证明左导数=右导数。
左导数:
y'(0)-
= lim{x→0-} (y(x)-y(0))/(x-0)
= lim{x→0-} x^2sin(1/x)/x
= lim{x→0-} x*sin(1/x)
= 0;
右导数:
y'(0)+
= lim{x→0+} (y(x)-y(0))/(x-0)
= lim{x→0+} x^2sin(1/x)/x
= lim{x→0+} x*sin(1/x)
= 0。
因此该函数可导。
对任意的小量t>0,存在s>0,s<t^0.5,当|x|<s时,我们有
|x^2sin(1/x)|<=x^2<s^2<t。
因此,此函数在x=0连续。
可导性:即证明左导数=右导数。
左导数:
y'(0)-
= lim{x→0-} (y(x)-y(0))/(x-0)
= lim{x→0-} x^2sin(1/x)/x
= lim{x→0-} x*sin(1/x)
= 0;
右导数:
y'(0)+
= lim{x→0+} (y(x)-y(0))/(x-0)
= lim{x→0+} x^2sin(1/x)/x
= lim{x→0+} x*sin(1/x)
= 0。
因此该函数可导。
展开全部
楼上太"本质"了吧 用定义也不能着么用啊
x 趋于0 y也趋于零(有界量乘以无穷小量)
故连续
不用分左右导数,直接求lim{x→0} (y(x)-y(0))/(x-0)
等于0 ,故可导
x 趋于0 y也趋于零(有界量乘以无穷小量)
故连续
不用分左右导数,直接求lim{x→0} (y(x)-y(0))/(x-0)
等于0 ,故可导
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
连不连续就看极限和函数值关系。x趋近于0,xsin(1/x)会趋近于0的,因为-1≤sin(1/x)≤1,所以x>0时0≤xsin(1/x)≤x,x、0在x趋近于0+的时候都是0,由夹逼原理可知x→0+时xsin(1/x)极限是0。完全类似可以证x<0的时候极限x→0-也是0。所以在0这一点x左右极限相等,均等于函数值0,所以连续。
看可不可导就列出定义式。f'(0)=[f(△x+0)-f(0)]/[△x-0](△x→0)=sin(1/△x)(△x→0)
显然(△x→0)时候sin(1/△x)值不定,可以在[-1,1]之间震荡,越来越快,所以没有极限,也就是导数不存在,这一点不可导。
看可不可导就列出定义式。f'(0)=[f(△x+0)-f(0)]/[△x-0](△x→0)=sin(1/△x)(△x→0)
显然(△x→0)时候sin(1/△x)值不定,可以在[-1,1]之间震荡,越来越快,所以没有极限,也就是导数不存在,这一点不可导。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询