已知函数f(x)=sinxcosx+根号3cos^2x-(根号3/2)
1.求函数y=f(x)在x属于[0,π/2]上的单调减区间和值域2.把y=f(x)的图像向右平移π/6个单位后得到的图像,其大于零的零点从小到大组成数列{xn},求数列{...
1.求函数y=f(x)在x属于[0,π/2]上的单调减区间和值域
2.把y=f(x)的图像向右平移π/6个单位后得到的图像,其大于零的零点从小到大组成数列{xn},求数列{xn}的前n项和Sn 展开
2.把y=f(x)的图像向右平移π/6个单位后得到的图像,其大于零的零点从小到大组成数列{xn},求数列{xn}的前n项和Sn 展开
1个回答
展开全部
f(x)=sinxcosx+√3(cosx)^2-√3/2
=(1/2)sin2x+(√3/2)cos2x
=sin2xcosπ/3+cos2xsinπ/3
=sin(2x+π/3)
1.
0<=x<=π/2,则π/3<=2x+π/3<=4π/3
π/2<=2x+π/3<=4π/3,则π/12<=x<=π/2,即单调递区间是[π/12,π/2]
当2x+π/3=π/2、即x=π/12时,f(x)取得最大值f(π/12)=1。
当2x+π/3=4π/4、即x=π/2时,f(x)取得最小值f(π/2)=-√3/2。
所以,值域为:[-√3/2,1]。
2.
f(x)=sin(2x+π/3)向右平移π/6个单位得到的是函数y=sin2x。
y=sin2x大于零的零点组成首项为π、公差为π的等差数列。
Sn=nπ+n(n-1)*π/2=(π/2)n^2+(π/2)n,n为正整数。
=(1/2)sin2x+(√3/2)cos2x
=sin2xcosπ/3+cos2xsinπ/3
=sin(2x+π/3)
1.
0<=x<=π/2,则π/3<=2x+π/3<=4π/3
π/2<=2x+π/3<=4π/3,则π/12<=x<=π/2,即单调递区间是[π/12,π/2]
当2x+π/3=π/2、即x=π/12时,f(x)取得最大值f(π/12)=1。
当2x+π/3=4π/4、即x=π/2时,f(x)取得最小值f(π/2)=-√3/2。
所以,值域为:[-√3/2,1]。
2.
f(x)=sin(2x+π/3)向右平移π/6个单位得到的是函数y=sin2x。
y=sin2x大于零的零点组成首项为π、公差为π的等差数列。
Sn=nπ+n(n-1)*π/2=(π/2)n^2+(π/2)n,n为正整数。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询