已知x,y,z均为正实数。求证x2/(y+z)+y2/(x+z)+z2/(x
1个回答
展开全部
证法一(基本不等式):
x^2/(y+z)+(y+z)/4≥x,
y^2/(z+x)+(z+x)/4≥y,
z^2/(x+y)+(x+y)/4≥z.
三式相加,整理得
x^2/(y+z)+y^2/(z+x)+z^2/(x+y)≥(x+y+z)/2.
证法二(Cauchy不等式):
x^2/(y+z)+y^2/(z+x)+z^2/(x+y)
≥(x+y+z)^2/[(y+z)+(z+x)+(x+y)]
=(x+y+z)^2/[2(x+y+z)]
=(x+y+z)/2,
故原不等式得证。
x^2/(y+z)+(y+z)/4≥x,
y^2/(z+x)+(z+x)/4≥y,
z^2/(x+y)+(x+y)/4≥z.
三式相加,整理得
x^2/(y+z)+y^2/(z+x)+z^2/(x+y)≥(x+y+z)/2.
证法二(Cauchy不等式):
x^2/(y+z)+y^2/(z+x)+z^2/(x+y)
≥(x+y+z)^2/[(y+z)+(z+x)+(x+y)]
=(x+y+z)^2/[2(x+y+z)]
=(x+y+z)/2,
故原不等式得证。
更多追问追答
追问
x^2/(y+z)+y^2/(z+x)+z^2/(x+y)
≥(x+y+z)^2/[(y+z)+(z+x)+(x+y)]怎么化得
追答
是柯西不等式的变形式。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询