数学手抄报的内容
42个回答
展开全部
第一写关于数学的名言
罗素说:“数学是符号加逻辑”
毕达哥拉斯说:“数支配着宇宙”
哈尔莫斯说:“数学是一种别具匠心的艺术”
米斯拉说:“数学是人类的思考中最高的成就”
培根(英国哲学家)说:“数学是打开科学大门的钥匙”
布尔巴基学派(法国数学研究团体)认为:“数学是研究抽象结构的理论”
黑格尔说:“数学是上帝描述自然的符号”
魏尔德(美国数学学会主席)说:“数学是一种会不断进化的文化”
柏拉图说:“数学是一切知识中的最高形式”
考特说:“数学是人类智慧皇冠上最灿烂的明珠”
第二写关于数学的意义
数学,作为人类思维的表达形式,反映了人们积极进取的意志、缜密周详的逻辑推理及对完美境界的追求。它的基本要素是:逻辑和直观、分析和推理、共性和个性。虽然不同的传统学派可以强调不同的侧面,然而正是这些互相对立的力量的相互作用,以及它们综合起来的努力,才构成了数学科学的生命力、可用性和它的崇高价值。
第三写关于数学的小故事
数学名人小故事-康托尔
由于研究无穷时往往推出一些合乎逻辑的但又荒谬的结果(称为“悖论”),许多大数学家唯恐陷进去而采取退避三舍的态度。在1874—1876年期间,不到30岁的年轻德国数学家康托尔向神秘的无穷宣战。他靠着辛勤的汗水,成功地证明了一条直线上的点能够和一个平面上的点一一对应,也能和空间中的点一一对应。这样看起来,1厘米长的线段内的点与太平洋面上的点,以及整个地球内部的点都“一样多”,后来几年,康托尔对这类“无穷集合”问题发表了一系列文章,通过严格证明得出了许多惊人的结论。康托尔的创造性工作与传统的数学观念发生了尖锐冲突,遭到一些人的反对、攻击甚至谩骂。有人说,康托尔的集合论是一种“疾病”,康托尔的概念是“雾中之雾”,甚至说康托尔是“疯子”。来自数学权威们的巨大精神压力终于摧垮了康托尔,使他心力交瘁,患了精神分裂症,被送进精神病医院。
真金不怕火炼,康托尔的思想终于大放光彩。1897年举行的第一次国际数学家会议上,他的成就得到承认,伟大的哲学家、数学家罗素称赞康托尔的工作“可能是这个时代所能夸耀的最巨大的工作。”可是这时康托尔仍然神志恍惚,不能从人们的崇敬中得到安慰和喜悦。1918年1月6日,康托尔在一家精神病院去世。
最后,可以写关于数学的笑话
小明小学数学考试,回来后他妈问他考得怎么样.小明说:"我基本上会做,但有一题3乘7,我怎么也想不出来.最后打铃了,我不管三七二十一就写了个18."
罗素说:“数学是符号加逻辑”
毕达哥拉斯说:“数支配着宇宙”
哈尔莫斯说:“数学是一种别具匠心的艺术”
米斯拉说:“数学是人类的思考中最高的成就”
培根(英国哲学家)说:“数学是打开科学大门的钥匙”
布尔巴基学派(法国数学研究团体)认为:“数学是研究抽象结构的理论”
黑格尔说:“数学是上帝描述自然的符号”
魏尔德(美国数学学会主席)说:“数学是一种会不断进化的文化”
柏拉图说:“数学是一切知识中的最高形式”
考特说:“数学是人类智慧皇冠上最灿烂的明珠”
第二写关于数学的意义
数学,作为人类思维的表达形式,反映了人们积极进取的意志、缜密周详的逻辑推理及对完美境界的追求。它的基本要素是:逻辑和直观、分析和推理、共性和个性。虽然不同的传统学派可以强调不同的侧面,然而正是这些互相对立的力量的相互作用,以及它们综合起来的努力,才构成了数学科学的生命力、可用性和它的崇高价值。
第三写关于数学的小故事
数学名人小故事-康托尔
由于研究无穷时往往推出一些合乎逻辑的但又荒谬的结果(称为“悖论”),许多大数学家唯恐陷进去而采取退避三舍的态度。在1874—1876年期间,不到30岁的年轻德国数学家康托尔向神秘的无穷宣战。他靠着辛勤的汗水,成功地证明了一条直线上的点能够和一个平面上的点一一对应,也能和空间中的点一一对应。这样看起来,1厘米长的线段内的点与太平洋面上的点,以及整个地球内部的点都“一样多”,后来几年,康托尔对这类“无穷集合”问题发表了一系列文章,通过严格证明得出了许多惊人的结论。康托尔的创造性工作与传统的数学观念发生了尖锐冲突,遭到一些人的反对、攻击甚至谩骂。有人说,康托尔的集合论是一种“疾病”,康托尔的概念是“雾中之雾”,甚至说康托尔是“疯子”。来自数学权威们的巨大精神压力终于摧垮了康托尔,使他心力交瘁,患了精神分裂症,被送进精神病医院。
真金不怕火炼,康托尔的思想终于大放光彩。1897年举行的第一次国际数学家会议上,他的成就得到承认,伟大的哲学家、数学家罗素称赞康托尔的工作“可能是这个时代所能夸耀的最巨大的工作。”可是这时康托尔仍然神志恍惚,不能从人们的崇敬中得到安慰和喜悦。1918年1月6日,康托尔在一家精神病院去世。
最后,可以写关于数学的笑话
小明小学数学考试,回来后他妈问他考得怎么样.小明说:"我基本上会做,但有一题3乘7,我怎么也想不出来.最后打铃了,我不管三七二十一就写了个18."
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2009-08-03
展开全部
某店来了三位顾客,急于要买饼赶火车,限定时间不能超过16分钟。几个厨师都说无能为力,因为要烙熟一个饼的两面各需要五分钟,一口锅一次可放两个饼,那么烙熟三个饼就得2O分钟。这时来了厨师老李,他说动足脑筋只要15分钟就行了。你知道该怎么来烙吗?
数学的起源:数学是一门最古老的学科,它的起源可以上溯到一万多年以前。但是,公元1000年以前的资料留存下来的极少。迄今所知,只有在古代埃及和巴比伦发现了比较系统的数学文献。
远在1 万5千年前人类就已经能相当逼真地描绘出人和动物的形象。这是萌发图形意识的最早证据。后来就逐渐开始了对圆形和直线形的追求,因而成为数学图形的最早的原型。在日常生活和生产实践中又逐渐产生了计数意识和计数系统,人类摸索过多种记数方法,有开始的结绳记数,用石块记数,语言点数进一步用符号,逐步发展到今天我们所用的数字。图形意识和计数意识发展到一定程度,又产生了度量意识。
这一系列的发展演变逐渐形成了今天我们所熟悉的完整的数学这一门学科,它包括算术、几何、代数、三角、微积分、统计和概率(其实它一开始是人们为了钻研赌博而来的呢)……等等各个分支,而且还在不断发展下去。
阿拉伯数字并不是阿拉伯人发明创造的,而是发源于古印度,后来被阿拉伯人掌握、改进,并传到了西方,西方人便将这些数字称为阿拉伯数字。以后,以讹传讹,世界各地都认同了这个说法。
阿拉伯数字是古代印度人在生产和实践中逐步创造出来的。
在古代印度,进行城市建设时需要设计和规划,进行祭祀时需要计算日月星辰的运行,于是,数学计算就产生了。大约在公元前3000年,印度河流域居民的数字就比较先进,而且采用了十进位的计算方法。
到公元前三世纪,印度出现了整套的数字,但在各地区的写法并不完全一致,其中最有代表性的是婆罗门式:这一组数字在当时是比较常用的。它的特点是从“1”到“9”每个数都有专字。现代数字就是由这一组数字演化而来。在这一组数字中,还没有出现“0”(零)的符号。“0”这个数字是到了笈多王朝(公元320—550年)时期才出现的。公元四世纪完成的数学著作《太阳手册》中,已使用“0”的符号,当时只是实心小圆点“•”。后来,小圆点演化成为小圆圈“0”。这样,一套从“1”到“0”的数字就趋于完善了。这是古代印度人民对世界文化的巨大贡献。
华罗庚(1910年11月12日-1985年6月12日),是中国在世界上最有影响的数学家之一,他的研究成果被国际数学界命名为“华氏定理”、“布劳威尔-加当-华定理”、“华-王方法”、“华氏算子”、“华氏不变式”等。 (很著名的人物啊)
然后呢 找一些 数学题就可以啦
什么笑话啊 等等
? 我来到菜市场,想买菜,菜场里面的菜是1.5元一斤,我准备买2斤,可是,我又看了看菜场外边的菜,它只有1.2元一斤,而且还比里面的菜好,我准备再买一斤,晚上炒着吃,这样不仅菜买得多,而且更便宜,便宜1.5×3=4.5(元)1.2×3=3.6(元)4.5-3.6=0.9(元)。
? 接着,我又去买肉。菜场里面的肉,瘦肉多,4.5元一斤;而菜场外面的肉,瘦肉少也要4.5元一斤,相比之下,我当然是选择菜场里的肉。于是,我就买了3斤肉,共花了4.5×3=13.5(元)。
数学的起源:数学是一门最古老的学科,它的起源可以上溯到一万多年以前。但是,公元1000年以前的资料留存下来的极少。迄今所知,只有在古代埃及和巴比伦发现了比较系统的数学文献。
远在1 万5千年前人类就已经能相当逼真地描绘出人和动物的形象。这是萌发图形意识的最早证据。后来就逐渐开始了对圆形和直线形的追求,因而成为数学图形的最早的原型。在日常生活和生产实践中又逐渐产生了计数意识和计数系统,人类摸索过多种记数方法,有开始的结绳记数,用石块记数,语言点数进一步用符号,逐步发展到今天我们所用的数字。图形意识和计数意识发展到一定程度,又产生了度量意识。
这一系列的发展演变逐渐形成了今天我们所熟悉的完整的数学这一门学科,它包括算术、几何、代数、三角、微积分、统计和概率(其实它一开始是人们为了钻研赌博而来的呢)……等等各个分支,而且还在不断发展下去。
阿拉伯数字并不是阿拉伯人发明创造的,而是发源于古印度,后来被阿拉伯人掌握、改进,并传到了西方,西方人便将这些数字称为阿拉伯数字。以后,以讹传讹,世界各地都认同了这个说法。
阿拉伯数字是古代印度人在生产和实践中逐步创造出来的。
在古代印度,进行城市建设时需要设计和规划,进行祭祀时需要计算日月星辰的运行,于是,数学计算就产生了。大约在公元前3000年,印度河流域居民的数字就比较先进,而且采用了十进位的计算方法。
到公元前三世纪,印度出现了整套的数字,但在各地区的写法并不完全一致,其中最有代表性的是婆罗门式:这一组数字在当时是比较常用的。它的特点是从“1”到“9”每个数都有专字。现代数字就是由这一组数字演化而来。在这一组数字中,还没有出现“0”(零)的符号。“0”这个数字是到了笈多王朝(公元320—550年)时期才出现的。公元四世纪完成的数学著作《太阳手册》中,已使用“0”的符号,当时只是实心小圆点“•”。后来,小圆点演化成为小圆圈“0”。这样,一套从“1”到“0”的数字就趋于完善了。这是古代印度人民对世界文化的巨大贡献。
华罗庚(1910年11月12日-1985年6月12日),是中国在世界上最有影响的数学家之一,他的研究成果被国际数学界命名为“华氏定理”、“布劳威尔-加当-华定理”、“华-王方法”、“华氏算子”、“华氏不变式”等。 (很著名的人物啊)
然后呢 找一些 数学题就可以啦
什么笑话啊 等等
? 我来到菜市场,想买菜,菜场里面的菜是1.5元一斤,我准备买2斤,可是,我又看了看菜场外边的菜,它只有1.2元一斤,而且还比里面的菜好,我准备再买一斤,晚上炒着吃,这样不仅菜买得多,而且更便宜,便宜1.5×3=4.5(元)1.2×3=3.6(元)4.5-3.6=0.9(元)。
? 接着,我又去买肉。菜场里面的肉,瘦肉多,4.5元一斤;而菜场外面的肉,瘦肉少也要4.5元一斤,相比之下,我当然是选择菜场里的肉。于是,我就买了3斤肉,共花了4.5×3=13.5(元)。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
你可以把乘法口诀表写上去,在写一些关于数学家的故事等,,还可以出些题目,或者趣味数学,也可以把数学家的资料写上去。。。。
故事如,祖 冲 之
祖冲之(公元429~500年)祖籍是现今河北省涞源县,他是南北朝时代的一位杰出科学家。他不仅是一位数学家,同时还通晓天文历法、机械制造、音乐等领域,并且是一位天文学家。
祖冲之在数学方面的主要成就是关于圆周率的计算,他算出的圆周率为3.1415926<π<3.1415927,这一结果的重要意义在于指出误差的范围,是当时世界最杰出的成就。祖冲之确定了两个形式的π值,约率355/173(≈3.1415926)密率22/7(≈3.14),这两个数都是 π的渐近分数。
还有些资料,,
华 罗 庚
华罗庚,中国现代数学家。1910年11月12日生于江苏省金坛县。1985年6月12日在日本东京逝世。华罗庚1924年初中毕业之后,在上海中华职业学校学习不到一年,因家贫辍学,他刻苦自修数学,1930年在《科学》上发表了关于代数方程式解法的文章,受到专家重视,被邀到清华大学工作,开始了数论的研究,1934年成为中华教育文化基金会研究员。1936年作为访问学者去英国剑桥大学工作。1938年回国,受聘为西南联合大学教授。1946年应苏联普林斯顿高等研究所邀请任研究员,并在普林斯顿大学执教。1948年始,他为伊利诺伊大学教授。
1950年回国,先后任清华大学教授、中国科技大学数学系主任、副校长,中国科学院数学研究所所长、中国科学院应用数学研究所所长、中国科学院副院长等。华罗庚还是第一、二、三、四、五届全国人大常委会委员和政协第六届全国委员会副主席。
华罗庚是国际上享有盛誉的数学家,他在解析数论、矩阵几何学、多复变函数论、偏微分方程等广泛数学领域中都做出卓越贡献,由于他的贡献,有许多定理、引理、不等式与方法都用他的名字命名。为了推广优选法,华罗庚亲自带领小分队去二十七个省普及应用数学方法达二十余年之久,取得了明显的经济效益和社会效益,为我国经济建设做出了重大贡献。
故事如,祖 冲 之
祖冲之(公元429~500年)祖籍是现今河北省涞源县,他是南北朝时代的一位杰出科学家。他不仅是一位数学家,同时还通晓天文历法、机械制造、音乐等领域,并且是一位天文学家。
祖冲之在数学方面的主要成就是关于圆周率的计算,他算出的圆周率为3.1415926<π<3.1415927,这一结果的重要意义在于指出误差的范围,是当时世界最杰出的成就。祖冲之确定了两个形式的π值,约率355/173(≈3.1415926)密率22/7(≈3.14),这两个数都是 π的渐近分数。
还有些资料,,
华 罗 庚
华罗庚,中国现代数学家。1910年11月12日生于江苏省金坛县。1985年6月12日在日本东京逝世。华罗庚1924年初中毕业之后,在上海中华职业学校学习不到一年,因家贫辍学,他刻苦自修数学,1930年在《科学》上发表了关于代数方程式解法的文章,受到专家重视,被邀到清华大学工作,开始了数论的研究,1934年成为中华教育文化基金会研究员。1936年作为访问学者去英国剑桥大学工作。1938年回国,受聘为西南联合大学教授。1946年应苏联普林斯顿高等研究所邀请任研究员,并在普林斯顿大学执教。1948年始,他为伊利诺伊大学教授。
1950年回国,先后任清华大学教授、中国科技大学数学系主任、副校长,中国科学院数学研究所所长、中国科学院应用数学研究所所长、中国科学院副院长等。华罗庚还是第一、二、三、四、五届全国人大常委会委员和政协第六届全国委员会副主席。
华罗庚是国际上享有盛誉的数学家,他在解析数论、矩阵几何学、多复变函数论、偏微分方程等广泛数学领域中都做出卓越贡献,由于他的贡献,有许多定理、引理、不等式与方法都用他的名字命名。为了推广优选法,华罗庚亲自带领小分队去二十七个省普及应用数学方法达二十余年之久,取得了明显的经济效益和社会效益,为我国经济建设做出了重大贡献。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
1、某数学家的奇闻趣事。2、趣味数学题,计划3-5道。3、学好数学的方法。
数学趣味小故事: 高斯念小学的时候,有一次在老师教完加法后,因为老师想要休息,所以便出了一道题目要同学们算算看,题目是: 1+2+3+ ..... +97+98+99+100 = ? 老师心里正想,这下子小朋友一定要算到下课了吧!正要借口出去时,却被 高斯叫住了!! 原来呀,高斯已经算出来了,小朋友你可知道他是如何算的吗? 高斯告诉大家他是如何算出的:把 1加 至 100 与 100 加至 1 排成两排相加,也就是说: 1+2+3+4+ ..... +96+97+98+99+100 100+99+98+97+96+ ..... +4+3+2+1 =101+101+101+ ..... +101+101+101+101 共有一百个101相加,但算式重复了两次,所以把10100 除以 2便得到答案等于 <5050> 从此以后高斯小学的学习过程早已经超越了其它的同学,也因此奠定了他以后的数学基础,更让他成为——数学天才!
一个长方形,如果长增加6厘米或者宽增加4厘米,面积都比原来增加48平方厘米,这个长方形原来的面积是多少平方厘米? 如果长增加6厘米,面积比原来增加48平方厘米,说明宽是48/6=8厘米,如果宽增加4厘米,面积增加48平方厘米,说明长是48/4=12厘米,那么原来的面积是8*12=96平方厘米。
数学趣味小故事: 高斯念小学的时候,有一次在老师教完加法后,因为老师想要休息,所以便出了一道题目要同学们算算看,题目是: 1+2+3+ ..... +97+98+99+100 = ? 老师心里正想,这下子小朋友一定要算到下课了吧!正要借口出去时,却被 高斯叫住了!! 原来呀,高斯已经算出来了,小朋友你可知道他是如何算的吗? 高斯告诉大家他是如何算出的:把 1加 至 100 与 100 加至 1 排成两排相加,也就是说: 1+2+3+4+ ..... +96+97+98+99+100 100+99+98+97+96+ ..... +4+3+2+1 =101+101+101+ ..... +101+101+101+101 共有一百个101相加,但算式重复了两次,所以把10100 除以 2便得到答案等于 <5050> 从此以后高斯小学的学习过程早已经超越了其它的同学,也因此奠定了他以后的数学基础,更让他成为——数学天才!
一个长方形,如果长增加6厘米或者宽增加4厘米,面积都比原来增加48平方厘米,这个长方形原来的面积是多少平方厘米? 如果长增加6厘米,面积比原来增加48平方厘米,说明宽是48/6=8厘米,如果宽增加4厘米,面积增加48平方厘米,说明长是48/4=12厘米,那么原来的面积是8*12=96平方厘米。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
帮你想一个栏目
数学泡泡屋
【1】平行四边形的面积=底×高
梯形的面积=(上底+下底)×高÷2
直径=2 r
圆的周长=πd= 2πr
圆的面积= πr^2
长方体的表面积=
(长×宽+长×高+宽×高)×2
长方体的体积 =长×宽×高
正方体的表面积=棱长×棱长×6
正方体的体积=棱长×棱长×棱长
圆柱的侧面积=底面圆的周长×高
圆柱的表面积=上下底面面积+侧面积
圆柱的体积=底面积×高
圆锥的体积=底面积×高÷3
柱体体积=底面积×高
平面图形
名称 符号 周长C和面积S
正方形 a—边长 C=4a S=a2
长方形 a和b-边长 C=2(a+b) S=ab
【2】1 过两点有且只有一条直线
2 两点之间线段最短
3 同角或等角的补角相等
4 同角或等角的余角相等
5 过一点有且只有一条直线和已知直线垂直
6 直线外一点与直线上各点连接的所有线段中,垂线段最短
7 平行公理 经过直线外一点,有且只有一条直线与这条直线平行
8 如果两条直线都和第三条直线平行,这两条直线也互相平行
9 同位角相等,两直线平行
10 内错角相等,两直线平行
11 同旁内角互补,两直线平行
12两直线平行,同位角相等
13 两直线平行,内错角相等
14 两直线平行,同旁内角互补
15 定理 三角形两边的和大于第三边
16 推论 三角形两边的差小于第三边
17 三角形内角和定理 三角形三个内角的和等于180°
18 推论1 直角三角形的两个锐角互余
19 推论2 三角形的一个外角等于和它不相邻的两个内角的和
20 推论3 三角形的一个外角大于任何一个和它不相邻的内角
21 全等三角形的对应边、对应角相等
22边角边公理(sas) 有两边和它们的夹角对应相等的两个三角形全等
23 角边角公理( asa)有两角和它们的夹边对应相等的两个三角形全等
24 推论(aas) 有两角和其中一角的对边对应相等的两个三角形全等
25 边边边公理(sss) 有三边对应相等的两个三角形全等
26 斜边、直角边公理(hl) 有斜边和一条直角边对应相等的两个直角三角形全等
27 定理1 在角的平分线上的点到这个角的两边的距离相等
28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上
数学泡泡屋
【1】平行四边形的面积=底×高
梯形的面积=(上底+下底)×高÷2
直径=2 r
圆的周长=πd= 2πr
圆的面积= πr^2
长方体的表面积=
(长×宽+长×高+宽×高)×2
长方体的体积 =长×宽×高
正方体的表面积=棱长×棱长×6
正方体的体积=棱长×棱长×棱长
圆柱的侧面积=底面圆的周长×高
圆柱的表面积=上下底面面积+侧面积
圆柱的体积=底面积×高
圆锥的体积=底面积×高÷3
柱体体积=底面积×高
平面图形
名称 符号 周长C和面积S
正方形 a—边长 C=4a S=a2
长方形 a和b-边长 C=2(a+b) S=ab
【2】1 过两点有且只有一条直线
2 两点之间线段最短
3 同角或等角的补角相等
4 同角或等角的余角相等
5 过一点有且只有一条直线和已知直线垂直
6 直线外一点与直线上各点连接的所有线段中,垂线段最短
7 平行公理 经过直线外一点,有且只有一条直线与这条直线平行
8 如果两条直线都和第三条直线平行,这两条直线也互相平行
9 同位角相等,两直线平行
10 内错角相等,两直线平行
11 同旁内角互补,两直线平行
12两直线平行,同位角相等
13 两直线平行,内错角相等
14 两直线平行,同旁内角互补
15 定理 三角形两边的和大于第三边
16 推论 三角形两边的差小于第三边
17 三角形内角和定理 三角形三个内角的和等于180°
18 推论1 直角三角形的两个锐角互余
19 推论2 三角形的一个外角等于和它不相邻的两个内角的和
20 推论3 三角形的一个外角大于任何一个和它不相邻的内角
21 全等三角形的对应边、对应角相等
22边角边公理(sas) 有两边和它们的夹角对应相等的两个三角形全等
23 角边角公理( asa)有两角和它们的夹边对应相等的两个三角形全等
24 推论(aas) 有两角和其中一角的对边对应相等的两个三角形全等
25 边边边公理(sss) 有三边对应相等的两个三角形全等
26 斜边、直角边公理(hl) 有斜边和一条直角边对应相等的两个直角三角形全等
27 定理1 在角的平分线上的点到这个角的两边的距离相等
28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询