求x11/(x8+3x4+2)的积分
解:∫(x^11)/(x^8+3*x^4+2)dx
=∫(x^8*x^3)/(x^8+3*x^4+2)dx
=1/4∫(x^8)/(x^8+3*x^4+2)d(x^4)
令t=x^4
则∫(x^11)/(x^8+3*x^4+2)dx
=1/4∫(x^8)/(x^8+3*x^4+2)d(x^4)
=1/4∫(t^2)/(t^2+3*t+2))dt
=1/4∫(t^2+3*t+2-3*t-2)/(t^2+3*t+2)dt
=1/4∫(1-(3*t+2)/(t^2+3*t+2))dt
=1/4∫dt-1/4∫(3*t+2)/(t^2+3*t+2)dt
=1/4t-1/4∫(3*t+3-1)/(t^2+3*t+2)dt
=1/4t-3/4∫(t+1)/(t^2+3*t+2)dt+1/4∫1/(t^2+3*t+2)dt
=1/4t-3/4∫1/(t+2)dt+1/4∫(1/(t+1)-1/(t+2))dt
=1/4t-3/4ln| t+2 | +1/4∫1/(t+1)dt-1/4∫1/(t+2)dt
=1/4t-3/4ln| t+2 |+1/4ln| t+1 |-1/4ln| t+2 |+C
=1/4t-4ln| t+2 |+1/4ln| t+1 |+C
而t=x^4
所以∫(x^11)/(x^8+3*x^4+2)dx
=1/4t-4ln| t+2 |+1/4ln| t+1 |+C
=1/4x^4-4ln| x^4+2 |+1/4ln| x^4+1 |+C
扩展资料:
1、不定积分的性质
(1)函数的和(差)的不定积分等于各个函数的不定积分的和(差)。即:
∫[a(x)±b(x)]dx=∫a(x)dx±∫b(x)dx
(2)求不定积分时,被积函数中的常数因子可以提到积分号外面来。即:
∫k*a(x)dx=k*∫a(x)dx
2、不定积分公式:∫adx=ax+C、∫1/xdx=ln|x|+C、∫e^xdx=e^x+C、∫cosxdx=sinx+C、∫sinxdx=-cosx+C、
3、例题
(1)∫dx=x+C
(2)∫7e^xdx=1/7*e^x+C
(3)∫6*cosxdx=1/6*sinx+C
(4)∫8x^7dx=1x^8+C
参考资料来源:百度百科-不定积分
∫(x^11)/(x^8+3x^4+2)dx
=1/4*∫(x^8)/(x^8+3x^4+2)dx^4
t=x^4
原积分=1/4*∫t^2/(t^2+3t+2)dt=1/4*∫(t^2+3t+2-3t-3+1)/(t+1)(t+2) dt
=1/4*∫dt-1/4*∫3/(t+2)dt+1/4*∫[1/(t+1)-1/(t+2)]dt
=1/4t-3/4*ln(t+2)+1/4*ln(t+1)/(t+2)+c
=1/4*x^4-1/4*ln(x^4+1)-ln(x^4+2)+c
解:
∫(x^11)/(x^8+3x^4+2)dx
=1/4*∫(x^8)/(x^8+3x^4+2)dx^4
t=x^4
原积分=1/4*∫t^2/(t^2+3t+2)dt=1/4*∫(t^2+3t+2-3t-3+1)/(t+1)(t+2) dt
=1/4*∫dt-1/4*∫3/(t+2)dt+1/4*∫[1/(t+1)-1/(t+2)]dt
=1/4t-3/4*ln(t+2)+1/4*ln(t+1)/(t+2)+c
=1/4*x^4-1/4*ln(x^4+1)-ln(x^4+2)+c