如图所示,AB是圆O的直径,AB=d,过A作圆O的切线并在其上取一点C,使AC=AB,连接OC交圆O于点D,
如图所示,AB是圆O的直径,AB=d,过A作圆O的切线并在其上取一点C,使AC=AB,连接OC交圆O于点D,BD的延长线交AC于E,求AE的长...
如图所示,AB是圆O的直径,AB=d,过A作圆O的切线并在其上取一点C,使AC=AB,连接OC交圆O于点D,BD的延长线交AC于E,求AE的长
展开
展开全部
明:(1)∠BAC=90°,AD⊥BC,
∴∠AFB=90°-∠ABF,∠AEF=∠BED=90°-∠EBD,
又BF平分∠ABC,
∴∠ABF=∠DBF,
∵∠AFB=∠AEF,
∴AE=AF,H为EF的中点,∴AH⊥EF;
(2)设BF=x,AF/ BF =k,则AF=kx,BA= √(BF²-AF²) =x√( 1-k² ),
∵∠AFH=∠BED,∴Rt△AHF∽Rt△BED∽Rt△BAF,
∴HF /AF =DE/ BE =AF/ BF =k,AH /AF =BD /BE =BA /BF = √(1-k²) ,
而FE=BF-2HF=x-2k•AF=x-2k²x=(1-2k²)x,
∴c1=AF+HF+AH=k(1+k+ 1-k² )x,c2=BE+BD+DE=(1+ 1-k² +k)(1-2k²)x,c3=AF+BA+BF=(k+ 1-k² +1)x,
∴c1+c2 c3 =-2k²+k+1=-2(k-1 /4 )²+9 /8 ≤9 /8 ,
故当k=1 /4 时,AF /BF =1/ 4 时取等号.
∴∠AFB=90°-∠ABF,∠AEF=∠BED=90°-∠EBD,
又BF平分∠ABC,
∴∠ABF=∠DBF,
∵∠AFB=∠AEF,
∴AE=AF,H为EF的中点,∴AH⊥EF;
(2)设BF=x,AF/ BF =k,则AF=kx,BA= √(BF²-AF²) =x√( 1-k² ),
∵∠AFH=∠BED,∴Rt△AHF∽Rt△BED∽Rt△BAF,
∴HF /AF =DE/ BE =AF/ BF =k,AH /AF =BD /BE =BA /BF = √(1-k²) ,
而FE=BF-2HF=x-2k•AF=x-2k²x=(1-2k²)x,
∴c1=AF+HF+AH=k(1+k+ 1-k² )x,c2=BE+BD+DE=(1+ 1-k² +k)(1-2k²)x,c3=AF+BA+BF=(k+ 1-k² +1)x,
∴c1+c2 c3 =-2k²+k+1=-2(k-1 /4 )²+9 /8 ≤9 /8 ,
故当k=1 /4 时,AF /BF =1/ 4 时取等号.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询