求不定积分∫(1+x^2)^1/2dx

 我来答
教育小百科达人
2019-03-24 · TA获得超过156万个赞
知道大有可为答主
回答量:8828
采纳率:99%
帮助的人:467万
展开全部

令x=tan(t), 则dx=(sect)^2dt

带入∫(1+x^2)^(1/2)dx

=∫sectdtant

=secttant-∫tantdsect

=sect*tant-∫sect*tan²tdt

=sect*tant-∫sect(sec²t-1)dt

=secttant-∫sec³tdt+∫sectdt

=secttant-∫sec³tdt+ln|sect+tant|

2∫sec³tdt=secttant+ln|sect+tant|

∫sec³tdt=(secttant+ln|sect+tant|)/2+C

反带回得:

∫(1+x^2)^1/2dx

=(x√(1+x^2)+ln|x+√(1+x^2)|)/2+C

连续函数,一定存在定积分和不定积分;若在有限区间[a,b]上只有有限个间断点且函数有界,则定积分存在;若有跳跃、可去、无穷间断点,则原函数一定不存在,即不定积分一定不存在。

扩展资料:

求函数f(x)的不定积分,就是要求出f(x)的所有的原函数,由原函数的性质可知,只要求出函数f(x)的一个原函数,再加上任意的常数C就得到函数f(x)的不定积分。

如果F(x)是f(x)在区间I上的一个原函数,那么F(x)+C就是f(x)的不定积分,即∫f(x)dx=F(x)+C。因而不定积分∫f(x) dx可以表示f(x)的任意一个原函数。

设f(x)在区间[a,b]上连续,则f(x)在[a,b]上可积。设f(x)区间[a,b]上有界,且只有有限个间断点,则f(x)在[a,b]上可积。设f(x)在区间[a,b]上单调,则f(x)在[a,b]上可积。

一个定积分式的值,就是原函数在上限的值与原函数在下限的值的差。

参考资料来源:百度百科——不定积分

你的眼神唯美
2019-11-12 · 海离薇:不定积分,求导验证。
你的眼神唯美
采纳数:1541 获赞数:61960

向TA提问 私信TA
展开全部

分部积分法。类似。

追答
第二题几乎一模一样
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
轮看殊O
高粉答主

2019-05-07 · 说的都是干货,快来关注
知道大有可为答主
回答量:2.6万
采纳率:99%
帮助的人:728万
展开全部

令x=tanθ,-π/2<θ<π/2

即dx=secθ^2*dθ

则∫(1/√1+x^2)dx

=∫(1/√(1+tanθ^2)*secθ^2*dθ

=∫(1/cosθ)dθ

=∫[cosθ/(cosθ)^2]dθ

=∫1/[1-(sinθ)^2]d(sinθ)

=1/2*ln[(1-sinθ)/(1+sinθ)]+C

=ln[x+√(1+x^2)]+c(c为常数)

求1/根号(1+x^2) 的原函数就是求函数1/根号(1+x^2) 对x的积分。

求1/根号(1+x^2) 的原函数,用”三角替换”消掉根号(1+x^2)。

扩展资料

不定积分的公式

1、∫ a dx = ax + C,a和C都是常数

2、∫ x^a dx = [x^(a + 1)]/(a + 1) + C,其中a为常数且 a ≠ -1

3、∫ 1/x dx = ln|x| + C

4、∫ a^x dx = (1/lna)a^x + C,其中a > 0 且 a ≠ 1

5、∫ e^x dx = e^x + C

6、∫ cosx dx = sinx + C

7、∫ sinx dx = - cosx + C

8、∫ cotx dx = ln|sinx| + C = - ln|cscx| + C

9、∫ tanx dx = - ln|cosx| + C = ln|secx| + C

10、∫ secx dx =ln|cot(x/2)| + C 

= (1/2)ln|(1 + sinx)/(1 - sinx)| + C 

= - ln|secx - tanx| + C 

= ln|secx + tanx| + C

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
匿名用户
2019-01-13
展开全部

上面的那几位高手用的是三角替换,鄙人学艺不精,用的是双曲替换

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
shawhom
高粉答主

2018-01-04 · 喜欢数学,玩点控制,就这点爱好!
shawhom
采纳数:11619 获赞数:27945

向TA提问 私信TA
展开全部
令x=tan(t), 则dx=(sect)^2dt,
带入∫(1+x^2)^(1/2)dx
=∫sectdtant
=secttant-∫tantdsect
=sect*tant-∫sect*tan²tdt
=sect*tant-∫sect(sec²t-1)dt
=secttant-∫sec³tdt+∫sectdt
=secttant-∫sec³tdt+ln|sect+tant|

2∫sec³tdt=secttant+ln|sect+tant|

∫sec³tdt=(secttant+ln|sect+tant|)/2+C
反带回得:
∫(1+x^2)^1/2dx
=(x√(1+x^2)+ln|x+√(1+x^2)|)/2+C
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(14)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式