已知向量a=(sin(π/2+x),cos(π-x)),向量b=(cosx,-sinx),函数f(x)=向量a*向量b. (1)求函数最小正周期
展开全部
a=(cosx,-cosx),b=(cosx,-sinx)
(1) f(x)=ab=cos²x+sinxcosx
=(1+cos2x)/2 +(1/2)sin2x
=(√2/2)[(√2/2)sin2x +(√2/2)cos2x] +1/2
=(√2/2)sin(2x+π/4)+1/2
最小正周期为T=2π/2=π
(2) f(A)=(√2/2)sin(2A+π/4)+1/2=1
sin(2A+π/4)=√2/2
又A为锐角,从而 2A+π/4=3π/4,A=π/4
所以 由正弦定理,a/sinA=b/sinB,得
AC=b =asinB/sinA=√6
(1) f(x)=ab=cos²x+sinxcosx
=(1+cos2x)/2 +(1/2)sin2x
=(√2/2)[(√2/2)sin2x +(√2/2)cos2x] +1/2
=(√2/2)sin(2x+π/4)+1/2
最小正周期为T=2π/2=π
(2) f(A)=(√2/2)sin(2A+π/4)+1/2=1
sin(2A+π/4)=√2/2
又A为锐角,从而 2A+π/4=3π/4,A=π/4
所以 由正弦定理,a/sinA=b/sinB,得
AC=b =asinB/sinA=√6
展开全部
向量a=(sin(π/2+x),cos(π-x))=(cosx,-cosx)
向量b=(cosx,-sinx)
f(x)=cos^2x+sinxcosx
=1/2cos2x+1/2sin2x+1/2
=√2/2sin(2x+π/4)+1/2
∴T=2π/2=π
f(A)=√2/2sin(2A+π/4)+1/2=1
sin(2A+π/4)=√2/2
0<A<π/2
π/4<2A+π/4<5π/4
∴2A+π/4=3π/4,
A=π/4
BC=a=2
AC=b=asinB/sinA
=(2×√3/2)/√2/2
=√6
向量b=(cosx,-sinx)
f(x)=cos^2x+sinxcosx
=1/2cos2x+1/2sin2x+1/2
=√2/2sin(2x+π/4)+1/2
∴T=2π/2=π
f(A)=√2/2sin(2A+π/4)+1/2=1
sin(2A+π/4)=√2/2
0<A<π/2
π/4<2A+π/4<5π/4
∴2A+π/4=3π/4,
A=π/4
BC=a=2
AC=b=asinB/sinA
=(2×√3/2)/√2/2
=√6
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询