求解函数的一阶二阶偏导
2个回答
展开全部
(1) z = ln(x+y^2), ∂z/∂x = 1/(x+y^2), ∂z/∂y = 2y/(x+y^2),
∂^2z/∂x^2 = -1/(x+y^2)^2
∂^2z/∂x∂y = -2y/(x+y^2)^2
∂^2z/∂y^2 = 2(x-y^2)/(x+y^2)^2
(2) z = x^y, ∂z/∂x = yx^(y-1), ∂z/∂y = x^ylnx,
∂^2z/∂x^2 = y(y-1)x^(y-2)
∂^2z/∂x∂y = x^(y-1)+yx^(y-1)lnx
∂^2z/∂y^2 = x^y(lnx)^2
∂^2z/∂x^2 = -1/(x+y^2)^2
∂^2z/∂x∂y = -2y/(x+y^2)^2
∂^2z/∂y^2 = 2(x-y^2)/(x+y^2)^2
(2) z = x^y, ∂z/∂x = yx^(y-1), ∂z/∂y = x^ylnx,
∂^2z/∂x^2 = y(y-1)x^(y-2)
∂^2z/∂x∂y = x^(y-1)+yx^(y-1)lnx
∂^2z/∂y^2 = x^y(lnx)^2
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询