已知a>0,函数f(x)=-2asin(2x+π/6)+2a+b,当x∈[0,π/2]时,-5≤f(
1个回答
展开全部
(1)因为,x∈[0,π/2],
2x+π/6∈[π/6,7π/6],
sin(2x+π/6)∈[-1/2,1],
又
a>0
所以,
-2a+2a+b=-5
a+2a+b=1
解得:
a=2,
b=-5
(2)
由(1)知,f(x)=-4sin(2x+π/6)-1
由题意
g(x)=f(x+π/2)
=-4sin(2x+π+π/6)-1
=4sin(2x+π/6)-1>1
即
sin(2x+π/6)>1/2
所以
2x+π/6∈(2kπ+π/6,2kπ+5π/6)
单调增区间满足
2x+π/6∈(2kπ+π/6,2kπ+π/2]
单调减区间满足
2x+π/6∈[2kπ+π/2,2kπ+5π/6)
解得
g(x)的单调增区间为
(kπ,kπ+π/6]
单调减区间为
[kπ+π/6,kπ+π/3]
2x+π/6∈[π/6,7π/6],
sin(2x+π/6)∈[-1/2,1],
又
a>0
所以,
-2a+2a+b=-5
a+2a+b=1
解得:
a=2,
b=-5
(2)
由(1)知,f(x)=-4sin(2x+π/6)-1
由题意
g(x)=f(x+π/2)
=-4sin(2x+π+π/6)-1
=4sin(2x+π/6)-1>1
即
sin(2x+π/6)>1/2
所以
2x+π/6∈(2kπ+π/6,2kπ+5π/6)
单调增区间满足
2x+π/6∈(2kπ+π/6,2kπ+π/2]
单调减区间满足
2x+π/6∈[2kπ+π/2,2kπ+5π/6)
解得
g(x)的单调增区间为
(kπ,kπ+π/6]
单调减区间为
[kπ+π/6,kπ+π/3]
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询