如图,AC⊥CB,DB⊥CB,AB=DC,求证∠ABD=∠ACD
展开全部
分析:根据AC⊥CB,DB⊥CB证明∠ACB=∠DBC=90°,然后证明△ACB和△DBC全等,再根据全等三角形对应角相等得到∠ABC=∠DCB,然后根据等角的余角相等即可得证.
解答:证明:∵AC⊥CB,DB⊥CB,
∴∠ACB=∠DBC=90°,
在△ACB和△DBC中,
AB=DC
BC=BC ,
∴△ACB≌△DBC(HL),
∴∠ABC=∠DCB,
又∵∠ACB=∠DBC,
∴∠ABD=∠ACD.
点评:本题考查了三角形全等的判定及性质;解题时主要利用全等三角形的判定和全等三角形对应角相等的性质,熟练掌握性质是解题的关键.
解答:证明:∵AC⊥CB,DB⊥CB,
∴∠ACB=∠DBC=90°,
在△ACB和△DBC中,
AB=DC
BC=BC ,
∴△ACB≌△DBC(HL),
∴∠ABC=∠DCB,
又∵∠ACB=∠DBC,
∴∠ABD=∠ACD.
点评:本题考查了三角形全等的判定及性质;解题时主要利用全等三角形的判定和全等三角形对应角相等的性质,熟练掌握性质是解题的关键.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询