1.求 S_n=1/2+3/(2^2)++(2n-1)/(2^n
1个回答
关注
展开全部
咨询记录 · 回答于2024-01-10
1.求 S_n=1/2+3/(2^2)++(2n-1)/(2^n
极限存在的前提下:
令 $S = \frac{1}{2} + \frac{3}{2^2} + \ldots + \frac{2n-1}{2^n}$
$2S = 1 + \frac{3}{2} + \ldots + \frac{2n-1}{2^{n-1}}$
$S = 2S - S = 1 + 1 + \frac{1}{2} + \ldots + \frac{1}{2^{n-2}} - \frac{2n-1}{2^n}$
$= 1 + \frac{1 - \frac{1}{2^{n-1}}}{1 - \frac{1}{2}} - \frac{2n-1}{2^n}$
$= 3 - \frac{1}{2^{n-2}} - \frac{2n-1}{2^n}$
$\lim_{\text{n} \to \infty} \left( \frac{1}{2} + \frac{3}{2^2} + \ldots + \frac{2n-1}{2^n} \right) = \lim_{\text{n} \to \infty} (3 - \frac{1}{2^{n-2}} - \frac{2n-1}{2^n}) = 3.$