设f(x)=x^2+2ax+1 在区间[-1,2]上的最大值为4 求a的值?

答案:对称轴是x=-a需要分两种情况–a小于等于2分之一第二种:a大于等于负的2分之一..........为什么答案给的分类讨论给的是2分之一可以是2或1或3分之一请高手... 答案: 对称轴是x=-a 需要分两种情况–a小于等于2分之一 第二种:a大于等于负的2分之一 .......... 为什么答案给的分类讨论 给的是2分之一 可以是2 或1 或 3分之一 请高手解答 该上高中啦 展开
hlxie405
2012-08-15 · TA获得超过1.2万个赞
知道大有可为答主
回答量:5323
采纳率:75%
帮助的人:1788万
展开全部
区间[-1,2]的中点是1/2,因为区间固定在[-1,2],
若对称轴是x=-a落在中点的左边,那么X=2的点要高一些;
反之,若对称轴是x=-a落在中点的左边,那么X=-1的点要高一些
因题目中是已知最大值为4,所以只分二种情况讨论:
x=-a大于等于1/2;与x=-a小于1/2就可以。
我的解释希望对你有帮助。
yxue
2012-08-15 · TA获得超过2.9万个赞
知道大有可为答主
回答量:1.2万
采纳率:94%
帮助的人:3067万
展开全部
1)
f(x)=x^2+2ax+1 在R上无最大值(开口向上),因此只需计算:在区间[-1,2]端点上的值:
f(-1)=1-2a+1=2(1-a)
f(2)=4+4a+1=4a+5
只有以下的两种可能:
2)如果:f(2)>f(-1), 即:4a+5>2(1-a) -> a>-1/2, 最大值为:f(2)=4a+5=4, a=-1/4.
3)如果:f(-1)>f(2), 即:2(1-a)>4a+5 -> a<-1/2, 最大值为:f(-1)=2-2a=4, a=-1.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
cgmcgmwo
2012-08-16 · TA获得超过3万个赞
知道大有可为答主
回答量:1.1万
采纳率:84%
帮助的人:2475万
展开全部
这是因为
f(x)=x²+2ax+1=x(x+2a)+1
这样当x等于最小值-1时, f(x)=-(2a-1)+1, 这时就要讨论2a-1=0与否时的情况了,
也就是a是否等于1/2的问题.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
麻小秆aU
2012-08-15 · TA获得超过185个赞
知道答主
回答量:44
采纳率:0%
帮助的人:51.5万
展开全部
当对称轴x=1/2时,f(-1)=f(2)
所以应该讨论-a≤1/2时,f(x)max=f(2)
-a>1/2时,f(x)max=f(-1)
解出来看下在不在范围就可以了
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
沙_丘
2012-08-15 · 超过15用户采纳过TA的回答
知道答主
回答量:100
采纳率:0%
帮助的人:54.7万
展开全部
2
追问
大侠会不 教教我
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(3)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式