已知x,y,z∈R,且x+y+z=1,x2+y2+z2=3,则xyz的最大值是,不要用导数的方法

麻烦啦!~... 麻烦啦!~ 展开
 我来答
抽抽126321
2013-10-02
知道答主
回答量:38
采纳率:0%
帮助的人:19.2万
展开全部
由条件可得xy+yz+xz=-1,利用x+y+z=1,可得xyz=z3-z2-z,利用导数的方法,可求xyz的最大值.
解答:解:∵x+y+z=1①,x2+y2+z2=3②
∴①2-②可得:xy+yz+xz=-1
∴xy+z(x+y)=-1
∵x+y+z=1,
∴x+y=1-z
∴xy=-1-z(x+y)=-1-z(1-z)=z2-z-1
∴xyz=z3-z2-z
令f(z)=z3-z2-z,则f′(z)=3z2-2z-1=(z-1)(3z+1)
令f′(z)>0,可得z>1或z<-3分之1
;令f′(z)<0,可得-3分之1<z<1

当z=-3分之1时,xyz的最大值为27分之5
故答案为27分之5
茹翊神谕者

2022-12-19 · TA获得超过2.5万个赞
知道大有可为答主
回答量:3.6万
采纳率:76%
帮助的人:1579万
展开全部

简单分析一下,答案如图所示

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
桂医杭师温医
2012-08-18 · TA获得超过110个赞
知道答主
回答量:100
采纳率:0%
帮助的人:48.4万
展开全部
(x2+y2+z2)(1+1+1)=9>=XYZ
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式