如果两条直线垂直,那么斜率相乘为多少?
两条直线平行,斜率相等,两条直线垂直,二者斜率相乘就为-1。
两条直线的斜率相等是两条直线平行的充分条件, 即:如果两条直线的斜率相等,那么这两条直线一定平行。两条直线都平行于y轴时,两直线的斜率都不存在。
如果两条直线垂直,那么斜率相乘就为-1。
扩展资料:
解析几何中,要通过点的坐标和直线方程来研究直线通过坐标计算求得,使方程形式上较为简单。如果只用倾斜角一个概念,那么它在实际上相当于反正切函数值arctank,难于直接通过坐标计算求得,并使方程形式变得复杂。
坐标平面内,每一条直线都有唯一的倾斜角,但不是每一条直线都有斜率,倾斜角是90°的直线(即x轴的垂线)没有斜率。在学习中,经常要对直线是否有斜率分情况进行讨论。
当直线L的斜率不存在时,斜截式y=kx+b,当k=0时 y=b。
当直线L的斜率存在时,点斜式y2-y1=k(X2—X1)
当直线L在两坐标轴上存在非零截距时,有截距式X/a+y/b=1
对于任意函数上任意一点,其斜率等于其切线与x轴正方向的夹角,即tanα
斜率计算:ax+by+c=0中,k=-a/b
直线斜率公式:k=(y2-y1)/(x2-x1)
当k>0时,直线与x轴夹角越大,斜率越大;当k<0时,直线与x轴夹角越小,斜率越小。