如图,在平行四边形ABCD中,E,F分别是AB,CD的中点,连接AF,CE.
(1)求证:△BEC全等于△DFA(2)连接ac,若CA=CB,判断四边形AECF是什么特殊四边形?并证明你的结论。...
(1)求证:△BEC全等于△DFA
(2)连接ac,若CA=CB,判断四边形AECF是什么特殊四边形?并证明你的结论。 展开
(2)连接ac,若CA=CB,判断四边形AECF是什么特殊四边形?并证明你的结论。 展开
4个回答
展开全部
(1)
证明:∵四边形ABCD是平行四边形
∴AB∥CD,AB=CD,AD=BC,∠B=∠D
又∵E、F分别是AB、CD的中点
∴BE=DF
∴△BEC≌△DFA
(2)四边形AECF是矩形,理由如下:
∵四边形ABCD是平行四边形
∴AB∥CD,AB=CD,
又∵E、F分别是AB、CD的中点
∴AE=CF
∴四边形AECF是平行四边形
∵CA=CB,E是AB的中点
∴CE⊥AB
∴∠AEC=90°
∴平行四边形AECF是矩形
证明:∵四边形ABCD是平行四边形
∴AB∥CD,AB=CD,AD=BC,∠B=∠D
又∵E、F分别是AB、CD的中点
∴BE=DF
∴△BEC≌△DFA
(2)四边形AECF是矩形,理由如下:
∵四边形ABCD是平行四边形
∴AB∥CD,AB=CD,
又∵E、F分别是AB、CD的中点
∴AE=CF
∴四边形AECF是平行四边形
∵CA=CB,E是AB的中点
∴CE⊥AB
∴∠AEC=90°
∴平行四边形AECF是矩形
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
*(1)证明:因为(符合自己写)四边形ABCD为平行四边形,所以(同上)AD平行且等于BC;DC平行且等于AB;角D等于角B;因为E,F分别是AB,CD的中点,所以DF=BE;综上所述三角形ADF与三角形DFA为全等三角形(两边相等,夹角相等);
*(2)你写错了吧,不可能AC=BC,因为在平行线间的平行线才能等长,试问难道AC平行于CB。你写错了吧。
*(2)你写错了吧,不可能AC=BC,因为在平行线间的平行线才能等长,试问难道AC平行于CB。你写错了吧。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2012-08-21
展开全部
????
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询