已知函数f(x)=sin^2ωx+√3cosωxcos(π/2-ωx)(ω>0)
且函数y=f(x)的图像相邻两条对称轴之间的距离为π/2,(1)求f(π/6)的值(2)若函数f(kx+π/12)(k>0)在[-π/6,π/3]上单调递增,求k的取值范...
且函数y=f(x)的图像相邻两条对称轴之间的距离为π/2,(1)求f(π/6)的值 (2)若函数f(kx+π/12)(k>0)在[-π/6,π/3]上单调递增,求k的取值范围
展开
展开全部
解:f(x)=sin^2ωx+√3cosωxcos(π/2-ωx)(ω>0)
=(1-cos2ωx)/2+(√3/2)sin2ωx
=sin(2ωx-π/6)+1/2
∵函数y=f(x)的图像相邻两条对称轴之间的距离为π/2即半周期=π/2
∴T=2π/2ω=π,∴ω=1,
∴f(x)=sin(2x-π/6)+1/2
(1)f(π/6)=sin(π/3-π/6)+1/2=sinπ/6+1/2=1/2+1/2=1
(2)函数f(kx+π/12)=sin(2kx+π/6-π/6)+1/2=sin2kx+1/2,其在[-π/2,π/2]上单调递增,
∴-π/2<2kx<π/2即-π/4k<x<π/4k,
又∵其在[-π/6,π/3]上单调递增
∴-π/4k<-π/6<x<π/3<π/4k,
∴0<k<3/4
=(1-cos2ωx)/2+(√3/2)sin2ωx
=sin(2ωx-π/6)+1/2
∵函数y=f(x)的图像相邻两条对称轴之间的距离为π/2即半周期=π/2
∴T=2π/2ω=π,∴ω=1,
∴f(x)=sin(2x-π/6)+1/2
(1)f(π/6)=sin(π/3-π/6)+1/2=sinπ/6+1/2=1/2+1/2=1
(2)函数f(kx+π/12)=sin(2kx+π/6-π/6)+1/2=sin2kx+1/2,其在[-π/2,π/2]上单调递增,
∴-π/2<2kx<π/2即-π/4k<x<π/4k,
又∵其在[-π/6,π/3]上单调递增
∴-π/4k<-π/6<x<π/3<π/4k,
∴0<k<3/4
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询