若a+b+c=0,且abc≠0,求a(1/b+1/c)+b(1/a+1/c)+c(1/a+1/b)+2 急急急~~~~ 步骤写清楚
1个回答
展开全部
a(1/b+1/c)+b(1/a+1/c)+c(1/a+1/b)+2
=a[(b+c)/(bc)]+b[(a+c)/(ac)]+c[(a+b)/(ab)]+2
=-a²/(bc)-b²/(ac)-c²/(ab)+2
=-(a³+b³+c³)/(abc)+2
=-[a³+b³+(-a-b)³]/(abc)+2
=-(a³+b³-a³-3a²b-3ab²-b³)/(abc)+2
=3ab(a+b)/(abc)+2
=-3abc/(abc)+2
=-3+2
=-1
=a[(b+c)/(bc)]+b[(a+c)/(ac)]+c[(a+b)/(ab)]+2
=-a²/(bc)-b²/(ac)-c²/(ab)+2
=-(a³+b³+c³)/(abc)+2
=-[a³+b³+(-a-b)³]/(abc)+2
=-(a³+b³-a³-3a²b-3ab²-b³)/(abc)+2
=3ab(a+b)/(abc)+2
=-3abc/(abc)+2
=-3+2
=-1
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询