物理题求解,第三问。
如图11所示,将一质量为m=0.1kg的小球自水平平台右端O点以初速度v。水平抛出,小球飞离平台后由A点沿切线落入竖直光滑圆轨道ABC,并沿轨道恰好通过最高点C,圆轨道A...
如图11所示,将一质量为m=0.1kg的小球自水平平台右端O点以初速度v。水平抛出,小球飞离平台后由A点沿切线落入竖直光滑圆轨道ABC,并沿轨道恰好通过最高点C,圆轨道ABC的形状为半径R=2.5 m的圆截去了左上角l270的圆弧,CB为其竖直直径,(sin530=0.8 cos530=0.6,重力加速度g取10m/s2)求:
(1) 小球经过C点的速度大小;
(2) 小球运动到轨道最低点B时小球对轨道的压力大小;
(3) 平台末端O点到A点的竖直高度H。 展开
(1) 小球经过C点的速度大小;
(2) 小球运动到轨道最低点B时小球对轨道的压力大小;
(3) 平台末端O点到A点的竖直高度H。 展开
5个回答
2012-08-30
展开全部
去网上题库搜,应该可以找到~
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
第一小题C点的速度算出来了为V那么可以根据能量守恒mgh=1/2mV^2由此可以算出A点的速度大小完了你画个小球从O到A的运动轨迹图,根据题目中给出的角ARB算出速度偏转角。由此算出竖直方向上的分速度最后根据V=gt和h=1/2gt^2就可以算出来了
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
解答:
(1)在c处,重力提供向心力,所以mg=m*v*v/R,v=对gR开方;
(2)由能量守恒,以B所在平面为零势能面
mg*2R+0.5m*v*v=0.5v1*v1;
所以v1=对(5gR)开方;由此得到b处小球所受到的向心力F=m*V1*v1/R=5mg;
B收到的支持力=5mg+mg=6mg;
由牛顿第三定律得到B对轨道的压力F1=F=6mg;(这是一个得分点)
(3)在A点对速度进行分解得到V2/V0=tan53
所以V2=4V0/3;
V3等于和速度=5v0/3;
由能量守恒定律R*(1-COS53)*mg+o.5m*v3*v3=0.5m*v1*v1;
由此得到v0;
再次有能量守恒列式子0.5m*(5v0/3)*(5v0/3)=mgh+0.5m*v0*v0;
这样就可以求得h的值。
希望对你有帮助!
(1)在c处,重力提供向心力,所以mg=m*v*v/R,v=对gR开方;
(2)由能量守恒,以B所在平面为零势能面
mg*2R+0.5m*v*v=0.5v1*v1;
所以v1=对(5gR)开方;由此得到b处小球所受到的向心力F=m*V1*v1/R=5mg;
B收到的支持力=5mg+mg=6mg;
由牛顿第三定律得到B对轨道的压力F1=F=6mg;(这是一个得分点)
(3)在A点对速度进行分解得到V2/V0=tan53
所以V2=4V0/3;
V3等于和速度=5v0/3;
由能量守恒定律R*(1-COS53)*mg+o.5m*v3*v3=0.5m*v1*v1;
由此得到v0;
再次有能量守恒列式子0.5m*(5v0/3)*(5v0/3)=mgh+0.5m*v0*v0;
这样就可以求得h的值。
希望对你有帮助!
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询