高中椭圆的二次方程联立问题
x^2/a^2+y^2/b^2=1(a>b>0)左右顶点分别为A,B,点P在椭圆上且异于Ab两点,O为坐标原点若AP=OA(距离),证明直线OP的斜率K满足K的绝对值小于...
x^2/a^2+y^2/b^2=1(a>b>0)左右顶点分别为A,B,点P在椭圆上且异于A b两点,O为坐标原点 若AP=OA(距离),证明直线OP的斜率K满足K的绝对值小于根号3 解答如下:把P的轨迹看成是以A为圆心,AO长为半径的圆,把该圆的方程和椭圆方程联立得到一个二次方程,又因为该圆与椭圆的交点是对称的,所以令判别式等于零,解得P的坐标,带入发现不成立。 据说是因为两次方程的联立有四个解,第一我不明白另外的两个解在哪里,能不能再几何图形里找到;第二,如果我用判别式为零得出的的坐标,在哪里,为什么不是本题要求的P的坐标? 望高手解答,谢谢!!
如果联力不行的话,那么下面的解答是否也是错误的?
椭圆(x/2)^2+y^2=1长轴端点为(-2,0)和(2,0),和内部的圆(x-3/2)^2+y^2=1/4相切于点(2,0)。
后面的圆以(3/2,0)为圆心,1/2为半径,经过点(2,0)。所以只需证明只有一个交点,或者说联立方程组只有一个解。联立并消去y^2,得(x-3/2)^2-(x/2)^2=-3/4,化简得3x^2-12x+12=0,只有一个解x=2。 展开
如果联力不行的话,那么下面的解答是否也是错误的?
椭圆(x/2)^2+y^2=1长轴端点为(-2,0)和(2,0),和内部的圆(x-3/2)^2+y^2=1/4相切于点(2,0)。
后面的圆以(3/2,0)为圆心,1/2为半径,经过点(2,0)。所以只需证明只有一个交点,或者说联立方程组只有一个解。联立并消去y^2,得(x-3/2)^2-(x/2)^2=-3/4,化简得3x^2-12x+12=0,只有一个解x=2。 展开
展开全部
联立是正确的,但不能令判别式等于零. 判别式等于零的含义是二者相切。
A(-a, 0), AO = a
以A为圆心,AO长为半径的圆的方程: (x+a)² + y² = a² , y² = a² - (x+a)² = -2ax -x²
带入椭圆方程: x²/a² + (-2ax-x²)/b² = 1
b²x² - 2a³x -a²x² = a²b²
(a² - b²)x² + 2a³x + a²b² = 0
判别式=4a⁶ -4(a²-b²)a²b² = 4a²(a⁴ - a²b² + b⁴)
x = [-2a³ ± 2a√(a⁴ - a²b² + b⁴)]/[2(a² - b²)] = [-a³ ± a√(a⁴ - a²b² + b⁴)]/(a² - b²)
可以证明,x= [-a³ - a√(a⁴ - a²b² + b⁴)]/(a² - b²) < -a 应当舍去。
然后求P的纵坐标,有两解,关于x轴对称。
A(-a, 0), AO = a
以A为圆心,AO长为半径的圆的方程: (x+a)² + y² = a² , y² = a² - (x+a)² = -2ax -x²
带入椭圆方程: x²/a² + (-2ax-x²)/b² = 1
b²x² - 2a³x -a²x² = a²b²
(a² - b²)x² + 2a³x + a²b² = 0
判别式=4a⁶ -4(a²-b²)a²b² = 4a²(a⁴ - a²b² + b⁴)
x = [-2a³ ± 2a√(a⁴ - a²b² + b⁴)]/[2(a² - b²)] = [-a³ ± a√(a⁴ - a²b² + b⁴)]/(a² - b²)
可以证明,x= [-a³ - a√(a⁴ - a²b² + b⁴)]/(a² - b²) < -a 应当舍去。
然后求P的纵坐标,有两解,关于x轴对称。
富港检测技术(东莞)有限公司_
2024-04-02 广告
2024-04-02 广告
正弦振动多用于找出产品设计或包装设计的脆弱点。看在哪一个具体频率点响应最大(共振点);正弦振动在任一瞬间只包含一种频率的振动,而随机振动在任一瞬间包含频谱范围内的各种频率的振动。由于随机振动包含频谱内所有的频率,所以样品上的共振点会同时激发...
点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |