求解复变函数方程sinz=2
顺带问一下,我单独解sinz的结果是:1/2sina(e^-b+e^b)—i/2cosa(e^-b+e^b),请问对不对额。。。(z=a+ib)...
顺带问一下,我单独解sinz的结果是:1/2sina(e^-b+e^b)—i/2cosa(e^-b+e^b),请问对不对额。。。(z=a+ib)
展开
2个回答
展开全部
z=a+ib
2=sinz=[e^(iz)-e^(-iz)]/(2i)=[e^(ia-b)-e^(-ia+b)]/(2i)
4i=e^(-b)(cosa+isina)-e^b(cosa-isina)
对比实部,虚部得:
0=e^(-b)cosa-e^bcosa
因为b<>0
所以有cosa=0
有sina=1
或-1
4=e^(-b)sina+e^bsina
sina=-1时,无解,所以只能取sina=1
得:e^b+e^(-b)=4
解得:e^2b-4e^b+1=0
得:e^b=2+√3
2-√3
得:b=ln(2+√3)
ln(2-√3)
由cosa=0,
sina=1,
得:a=2kπ+π/2
所以z=a+ib,
a=2kπ+π/2,
b=ln(2+√3),
ln(2-√3)
发展简况
复变函数论产生于十八世纪。1774年,欧拉在他的一篇论文中考虑了由复变函数的积分导出的两个方程。而比他更早时,法国数学家达朗贝尔在他的关于流体力学的论文中,就已经得到了它们。因此,后来人们提到这两个方程,把它们叫做“达朗贝尔-欧拉方程”。到了十九世纪,上述两个方程在柯西和黎曼研究流体力学时,作了更详细的研究,所以这两个方程也被叫做“柯西-黎曼条件”。
富港检测技术(东莞)有限公司_
2024-04-02 广告
2024-04-02 广告
正弦振动多用于找出产品设计或包装设计的脆弱点。看在哪一个具体频率点响应最大(共振点);正弦振动在任一瞬间只包含一种频率的振动,而随机振动在任一瞬间包含频谱范围内的各种频率的振动。由于随机振动包含频谱内所有的频率,所以样品上的共振点会同时激发...
点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
展开全部
z=a+ib
2=sinz=[e^(iz)-e^(-iz)]/(2i)=[e^(ia-b)-e^(-ia+b)]/(2i)
4i=e^(-b)(cosa+isina)-e^b(cosa-isina)
对比实部,虚部得:
0=e^(-b)cosa-e^bcosa, 因为b<>0, 所以有cosa=0, 有sina=1, 或-1
4=e^(-b)sina+e^bsina, sina=-1时,无解,所以只能取sina=1, 得:e^b+e^(-b)=4, 解得:e^2b-4e^b+1=0, 得:e^b=2+√3, 2-√3, 得:b=ln(2+√3), ln(2-√3)
由cosa=0, sina=1, 得:a=2kπ+π/2
所以z=a+ib, a=2kπ+π/2, b=ln(2+√3), ln(2-√3)
2=sinz=[e^(iz)-e^(-iz)]/(2i)=[e^(ia-b)-e^(-ia+b)]/(2i)
4i=e^(-b)(cosa+isina)-e^b(cosa-isina)
对比实部,虚部得:
0=e^(-b)cosa-e^bcosa, 因为b<>0, 所以有cosa=0, 有sina=1, 或-1
4=e^(-b)sina+e^bsina, sina=-1时,无解,所以只能取sina=1, 得:e^b+e^(-b)=4, 解得:e^2b-4e^b+1=0, 得:e^b=2+√3, 2-√3, 得:b=ln(2+√3), ln(2-√3)
由cosa=0, sina=1, 得:a=2kπ+π/2
所以z=a+ib, a=2kπ+π/2, b=ln(2+√3), ln(2-√3)
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询