2012年北京市海淀一模数学第22题,求过程!!好的加分!!!
小明遇到这样一个问题:如图1,△ABO和△CDO均为等腰直角三角形,∠AOB=∠COD=900,若△BOC的面积为1,试求以AD、BC、OC+OD的长度为三边长的三角形的...
小明遇到这样一个问题:如图1,△ABO和△CDO均为等腰直角三角形,∠AOB=∠COD=900,若△BOC的面积为1,试求以AD、BC、OC+OD的长度为三边长的三角形的面积。 小明是这样思考的:要解决这个问题,首先应想办法移动这些分散的线段,构造一个三角形,再计算其面积即可,他利用图形变换解决了这个问题,其解题思路是延长CO到E,使得OE=CO,连接BE,可证△OBE≌△OAD,从而得到的△BCE即是以AD、BC、OC+OD的长度为三边长的三角形(如图2). 请你回答:图2中的△BCE的面积等于 请你尝试用平移、旋转、翻折的方法,解决下列问题: 如图3,已知△ABC,分别以AB、AC、BC为边向外作正方形ABDE、AGFC、BCHI,连接EG、FH、ID。 (1)在图3中利用图形变换画出并指明以EG、FH、ID的长度为三边长的一个三角形(保留画图痕迹); (2)若△ABC的面积为1,则以EG、FH、ID的长度为三边长的三角形的面积等于 要过程!!!好的加分
展开
2个回答
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询