如图在rt三角形abc中,角c等于90度,ac=8,bc=6,按图中所示方法将三角形bcd沿bd折叠,使点c落在边ab上的点c'处
3个回答
展开全部
解:AB=√(AC^2+BC^2)=10;BC'=BC=6,则AC'=4.
∠BC'D=∠C=90°,则∠AC'D=∠C=90°;
又∠A=∠A,故⊿AC'D∽⊿ACB,AC'/AC=AD/AB.
即:4/8=AD/10,AD=5,CD=AC-AD=3,BD=√(CD^2+BC^2)=3√5.
∠BC'D=∠C=90°,则∠AC'D=∠C=90°;
又∠A=∠A,故⊿AC'D∽⊿ACB,AC'/AC=AD/AB.
即:4/8=AD/10,AD=5,CD=AC-AD=3,BD=√(CD^2+BC^2)=3√5.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
解:AB=√(AC^2+BC^2)=10;BC'=BC=6,则AC'=4.
∠BC'D=∠C=90°,则∠AC'D=∠C=90°;
又∠A=∠A,故⊿AC'D∽⊿ACB,AC'/AC=AD/AB.
即:4/8=AD/10,AD=5,CD=AC-AD=3,BD=√(CD^2+BC^2)=3√5.
∠BC'D=∠C=90°,则∠AC'D=∠C=90°;
又∠A=∠A,故⊿AC'D∽⊿ACB,AC'/AC=AD/AB.
即:4/8=AD/10,AD=5,CD=AC-AD=3,BD=√(CD^2+BC^2)=3√5.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2014-10-22
展开全部
解:AB=√(AC^2+BC^2)=10;BC'=BC=6,则AC'=4.
∠BC'D=∠C=90°,则∠AC'D=∠C=90°;
又∠A=∠A,故⊿AC'D∽⊿ACB,AC'/AC=AD/AB.
即:4/8=AD/10,AD=5,CD=AC-AD=3,BD=√(CD^2+BC^2)=3√5.
∠BC'D=∠C=90°,则∠AC'D=∠C=90°;
又∠A=∠A,故⊿AC'D∽⊿ACB,AC'/AC=AD/AB.
即:4/8=AD/10,AD=5,CD=AC-AD=3,BD=√(CD^2+BC^2)=3√5.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询