展开全部
解:y=√(1-8x)+√(8x-1) +1/2
因为被开方数要大于等于0
所以 1-8x≥0 且 8x-1≥0
8x≤1 且 8x≥1
所以 8x=1
x=1/8
y=0+0+ 1/2=1/2
原式=√(x/y+y/x +2 )-√(x/y+y/x -2 ) 被开方数通分
=√[(x²+y²+2xy)/(xy)] -√[(x²+y²-2xy)/(xy)]
=√[(x+y)²/(xy)]-√[(x-y)²/(xy)]
=|x+y|√[1/(xy)]-|x-y|√[1/(xy)]
=(|x+y|-|x-y|)√[1/(xy)]
=(|x+y|-|x-y|)√[xy/(xy)²]
=(|x+y|-|x-y|)√(xy)/|xy|
∵x=1/8, y=1/2
∴x+y﹥0 , x-y﹤0, xy﹥0
原式=(x+y+x-y)√(xy)/(xy)
=2x√(xy)/(xy)
=2×1/8√(1/8×1/2)/(1/8×1/2)
=1/4√(1/16)/(1/16)
=(1/4×1/4)×16
=1
因为被开方数要大于等于0
所以 1-8x≥0 且 8x-1≥0
8x≤1 且 8x≥1
所以 8x=1
x=1/8
y=0+0+ 1/2=1/2
原式=√(x/y+y/x +2 )-√(x/y+y/x -2 ) 被开方数通分
=√[(x²+y²+2xy)/(xy)] -√[(x²+y²-2xy)/(xy)]
=√[(x+y)²/(xy)]-√[(x-y)²/(xy)]
=|x+y|√[1/(xy)]-|x-y|√[1/(xy)]
=(|x+y|-|x-y|)√[1/(xy)]
=(|x+y|-|x-y|)√[xy/(xy)²]
=(|x+y|-|x-y|)√(xy)/|xy|
∵x=1/8, y=1/2
∴x+y﹥0 , x-y﹤0, xy﹥0
原式=(x+y+x-y)√(xy)/(xy)
=2x√(xy)/(xy)
=2×1/8√(1/8×1/2)/(1/8×1/2)
=1/4√(1/16)/(1/16)
=(1/4×1/4)×16
=1
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询