y=ln(x+√1+X^2)的导数 求详细过程
4个回答
展开全部
y'=[ln(x+√(1+x²))]'
=1/(x+√(1+x²)) * [x+√(1+x²)]'
=1/(x+√(1+x²)) * [1+2x/2√(1+x²)]
=1/(x+√(1+x²)) * [1+x/√(1+x²)]
=1/(x+√(1+x²)) * [1√(1+x²)+x]/√(1+x²)
=1/√(1+x²)
可导,即设y=f(x)是一个单变量函数, 如果y在x=x0处左右导数分别存在且相等,则称y在x=x[0]处可导。如果一个函数在x0处可导,那么它一定在x0处是连续函数。
函数可导的条件:
如果一个函数的定义域为全体实数,即函数在其上都有定义。函数在定义域中一点可导需要一定的条件:函数在该点的左右导数存在且相等,不能证明这点导数存在。只有左右导数存在且相等,并且在该点连续,才能证明该点可导。
可导的函数一定连续;连续的函数不一定可导,不连续的函数一定不可导。
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
y'=[ln(x+√(1+x²))]'
=1/(x+√(1+x²)) * [x+√(1+x²)]'
=1/(x+√(1+x²)) * [1+2x/2√(1+x²)]
=1/(x+√(1+x²)) * [1+x/√(1+x²)]
=1/(x+√(1+x²)) * [1√(1+x²)+x]/√(1+x²)
=1/√(1+x²)
希望可以帮到你,不明白可以追问,如果解决了问题,请点下面的"选为满意回答"按钮,谢谢。
=1/(x+√(1+x²)) * [x+√(1+x²)]'
=1/(x+√(1+x²)) * [1+2x/2√(1+x²)]
=1/(x+√(1+x²)) * [1+x/√(1+x²)]
=1/(x+√(1+x²)) * [1√(1+x²)+x]/√(1+x²)
=1/√(1+x²)
希望可以帮到你,不明白可以追问,如果解决了问题,请点下面的"选为满意回答"按钮,谢谢。
更多追问追答
追问
[x+√(1+x²)]'→[1+2x/2√(1+x²)] 从前一步到后一步是怎么出来的 我不是很理解
追答
x求导结果是1
√(1+x²)=(1+x²)^(1/2),(x²+1)看作中间变量
求导后为:(1/2)(1+x²)^(-1/2)*(1+x²)'=x/√(1+x²)
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2012-09-19 · 知道合伙人教育行家
关注
展开全部
y'=1/[x+√(1+x^2)]*[(x+√(1+x^2)]'
=1/[x+√(1+x^2)]*{1+1/2*[1/√(1+x^2)]*2x}
=1/[x+√(1+x^2)]*[1+x/√(1+x^2)]
=1/[x+√(1+x^2)]*{[√(1+x^2)+x]/√(1+x^2)}
=1/√(1+x^2)
=1/[x+√(1+x^2)]*{1+1/2*[1/√(1+x^2)]*2x}
=1/[x+√(1+x^2)]*[1+x/√(1+x^2)]
=1/[x+√(1+x^2)]*{[√(1+x^2)+x]/√(1+x^2)}
=1/√(1+x^2)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询