如图,在三角形ABD和三角形ACE中,角BAD=角CAE=90度,AD=AB,AC=AE,三角形ABE全等三角形ADC,角AFD=角AFE.
如图,在三角形ABD和三角形ACE中,角BAD=角CAE=90度,AD=AB,AC=AE,三角形ABE全等三角形ADC,角AFD=角AFE.AM为AC的延长线交DE于点M...
如图,在三角形ABD和三角形ACE中,角BAD=角CAE=90度,AD=AB,AC=AE,三角形ABE全等三角形ADC,角AFD=角AFE.AM为AC的延长线交DE于点M
求证:AM垂直BC,AM=1/2BC 过程要详细,不要省略,在全等三角形后加上(),例:三角形ABC全等三角形DEF(SAS)。 请快点,明天要交了 展开
求证:AM垂直BC,AM=1/2BC 过程要详细,不要省略,在全等三角形后加上(),例:三角形ABC全等三角形DEF(SAS)。 请快点,明天要交了 展开
3个回答
展开全部
第一个应该是求证:△ABE≌△ACD
1、证明
∵∠BAD=∠CAE=90
∴∠CAD=∠CAB+∠BAD=∠CAB+90, ∠BAE=∠CAB+∠CAE=∠CAB+90
∴∠CAD=∠BAE
∵AB=AD,AC=AE
∴△ABE≌△ACD
2、∠AFD=∠AFE
证明:
过点A作AM⊥CD于M,作AN⊥BE于N
∵△ABE≌△ACD
∴S△ABE=S△ACD,BE=CD
∵AM⊥CD,AN⊥BE
∴S△ACD=CD×AM/2,S△ABE=BE×AN/2
∴CD×AM/2=BE×AN/2
∴AM=AN
∵AF=AF,AM⊥CD,AN⊥BE
∴△AMF≌△ANF
∴∠AFD=∠AFE
1、证明
∵∠BAD=∠CAE=90
∴∠CAD=∠CAB+∠BAD=∠CAB+90, ∠BAE=∠CAB+∠CAE=∠CAB+90
∴∠CAD=∠BAE
∵AB=AD,AC=AE
∴△ABE≌△ACD
2、∠AFD=∠AFE
证明:
过点A作AM⊥CD于M,作AN⊥BE于N
∵△ABE≌△ACD
∴S△ABE=S△ACD,BE=CD
∵AM⊥CD,AN⊥BE
∴S△ACD=CD×AM/2,S△ABE=BE×AN/2
∴CD×AM/2=BE×AN/2
∴AM=AN
∵AF=AF,AM⊥CD,AN⊥BE
∴△AMF≌△ANF
∴∠AFD=∠AFE
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询