数列an的前n项和记为sn,已知a1=1 an+1=(n分之n+2)乘sn(n=1,2,3,...)求证 5
2个回答
展开全部
a(n+1)=S(n+1)-Sn=(n+2)/n*Sn
nS(n+1)-nSn=(n+2)Sn
nS(n+1)=2(n+1)Sn
S(n+1)/(n+1)=2(Sn/n)
[S(n+1)/(n+1)]/(Sn/n)=2
{Sn/n}是以2为公比的等比数列
nS(n+1)-nSn=(n+2)Sn
nS(n+1)=2(n+1)Sn
S(n+1)/(n+1)=2(Sn/n)
[S(n+1)/(n+1)]/(Sn/n)=2
{Sn/n}是以2为公比的等比数列
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
解:
(1) 由已知有:
S[n+1] = S[n]+a[n+1] = S[n] + (n+2)/n *S[n]
==> S[n+1]/(n+1) = 2S[n]/n
==> { S[n+1]/(n+1)}/{S[n]/n} =2
可知 {S[n]/n} 为公比为2的等比数列;
(2 S[1] =a[1] =1,因此
S[n]/n = (S[1]/1)* 2^(n-1) = 2^(n-1)
==> S[n] = n*2^(n-1)
a[n] = S[n] - S[n-1] = n*2^(n-1) -(n-1)*2^(n-2) = (n+1)*2^(n-2)
S[n+1] = (n+1)*2^n = 4*(n+1)*2^(n-2)
==> S[n+1] = 4a[n]
结论得证
(1) 由已知有:
S[n+1] = S[n]+a[n+1] = S[n] + (n+2)/n *S[n]
==> S[n+1]/(n+1) = 2S[n]/n
==> { S[n+1]/(n+1)}/{S[n]/n} =2
可知 {S[n]/n} 为公比为2的等比数列;
(2 S[1] =a[1] =1,因此
S[n]/n = (S[1]/1)* 2^(n-1) = 2^(n-1)
==> S[n] = n*2^(n-1)
a[n] = S[n] - S[n-1] = n*2^(n-1) -(n-1)*2^(n-2) = (n+1)*2^(n-2)
S[n+1] = (n+1)*2^n = 4*(n+1)*2^(n-2)
==> S[n+1] = 4a[n]
结论得证
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询