一道高一数学题 PS:请写出过程
已知函数f(x)的定义域为R,对任意实数m,n满足f(1/2)=2,且f(m+n)=f(m)+f(n)-1,当x>-1/2时f(x)>0求证:f(x)在定义域R上单调递增...
已知函数f(x)的定义域为R,对任意实数m,n满足f(1/2)=2,且f(m+n)=f(m)+f(n)-1,当x>-1/2时f(x)>0
求证:f(x)在定义域R上单调递增 展开
求证:f(x)在定义域R上单调递增 展开
2个回答
展开全部
因为f(m+n)=f(m)+f(n)-1,所以f(x+Δx)=f(x)+f(Δx)-1
所以f(x+Δx)-f(x)=f(Δx)-1,问题变为证明Δx趋向于+0时有f(Δx)>=1,即f'(0)>=0.由题得:f'(x)=f'(-x).因为当x>-1/2时f(x)>0且f(-1/2)=0,所以f'(-1/2)>=0,f'(1/2)>=0.令f(m+n)中m=x(变量),n=-1/2,则f(x-1/2)=f(x)-1,两边求导得:f'(x-1/2)=f'(x),令x=1/2可得:f'(0)=f'(1/2)>=0,所以f(x)在定义域R上单调递增
所以f(x+Δx)-f(x)=f(Δx)-1,问题变为证明Δx趋向于+0时有f(Δx)>=1,即f'(0)>=0.由题得:f'(x)=f'(-x).因为当x>-1/2时f(x)>0且f(-1/2)=0,所以f'(-1/2)>=0,f'(1/2)>=0.令f(m+n)中m=x(变量),n=-1/2,则f(x-1/2)=f(x)-1,两边求导得:f'(x-1/2)=f'(x),令x=1/2可得:f'(0)=f'(1/2)>=0,所以f(x)在定义域R上单调递增
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询