lim (x→0)[√﹙x²﹢x+1﹚]-[√﹙x²-x+1﹚]求极限

feidao2010
2012-10-04 · TA获得超过13.7万个赞
知道顶级答主
回答量:2.5万
采纳率:92%
帮助的人:1.6亿
展开全部
解答:
lim (x→0)[√﹙x²﹢x+1﹚]-[√﹙x²-x+1﹚]=0
是不是x-->∞
[√﹙x²﹢x+1﹚]-[√﹙x²-x+1﹚]
={[√﹙x²﹢x+1﹚]-[√﹙x²-x+1﹚]}/1
分子分母同时乘以[√﹙x²﹢x+1﹚]+[√﹙x²-x+1﹚]
=[(x²+x+1)-(x²-x+1)/[√﹙x²﹢x+1﹚]+[√﹙x²-x+1﹚]
=2x/[√﹙x²﹢x+1﹚]-[√﹙x²-x+1﹚]
∴ lim (x→∞)[√﹙x²﹢x+1﹚]-[√﹙x²-x+1﹚]
=lim (x→∞)2x/[√﹙x²﹢x+1﹚]+[√﹙x²-x+1﹚]
=2 /2
=1
我不是他舅
2012-10-04 · TA获得超过138万个赞
知道顶级答主
回答量:29.6万
采纳率:79%
帮助的人:34.4亿
展开全部
趋于0??

那就等于√1-√1=0
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式