已知关于x的方程(k-1)x²+2kx+k+3=0
(1)若方程有两个不相等的实数根,求k的取值范围(2)当方程有两个相等的实数根是,求关于y的方程y²+(a-4k)y+a+1=0的整数根(a为正整数)(只要第二...
(1)若方程有两个不相等的实数根,求k的取值范围
(2) 当方程有两个相等的实数根是,求关于y的方程y²+(a-4k)y+a+1=0的整数根(a为正整数) (只要第二题) 展开
(2) 当方程有两个相等的实数根是,求关于y的方程y²+(a-4k)y+a+1=0的整数根(a为正整数) (只要第二题) 展开
1个回答
展开全部
关于x的方程 (k-1)x² + 2kx + k+3 = 0 有两个相等的实数根
Δ=(2k)² - 4(k-1)(k+3) = 0
解得 k= 3/2
代入关于y的方程 y² + (a-4k)y + a+1 = 0
得 y² + (a-6)y + a+1 = 0
Δ= (a-6)² - 4(a+1) = a² - 16a + 32 = (a-8)² - 32 ≥ 0
(a-8)² ≥ 32 a-8 ≤ - 4√2 或 a-8 ≥ 4√2
a ≤ 8 - 4√2 (等于2.34…) 或 a ≥ 8+4√2(等于13.65…)竖绝
又a为正整数
∴ 0<a≤2 或 a ≥ 14 且a为整数
方程的根是整数,所以Δ为完全平方数
设 (a-8)² - 32 = m² (设m≥0)
(a-8)² - m² = 32
(a-8+m)(a-8-m) = 32
①a-8-m=1 且 a-8+m=32 解不是整数
②a-8-m=2 且 a-8+m=16 解得 a=17
③a-8-m=4 且余卖姿 a-8+m=8 解得 a=14
④a-8-m= -32 且 a-8+m= -1 解配茄不是整数
⑤a-8-m= -16 且 a-8+m = -2 解得 a= -1(舍去)
⑥a-8-m= -8 且 a-8+m = -4 解得 a=2
当a = 17时,y² + 11y + 18 = 0 ,解得 y₁= - 2 ,y₂ = - 9
当a = 14时,y² + 8y + 15 = 0,解得 y₁ = -3,y₂ = - 5
当a = 2时,y² - 4y + 3 = 0 ,解得 y₁ = 1 ,y₂ = 3
Δ=(2k)² - 4(k-1)(k+3) = 0
解得 k= 3/2
代入关于y的方程 y² + (a-4k)y + a+1 = 0
得 y² + (a-6)y + a+1 = 0
Δ= (a-6)² - 4(a+1) = a² - 16a + 32 = (a-8)² - 32 ≥ 0
(a-8)² ≥ 32 a-8 ≤ - 4√2 或 a-8 ≥ 4√2
a ≤ 8 - 4√2 (等于2.34…) 或 a ≥ 8+4√2(等于13.65…)竖绝
又a为正整数
∴ 0<a≤2 或 a ≥ 14 且a为整数
方程的根是整数,所以Δ为完全平方数
设 (a-8)² - 32 = m² (设m≥0)
(a-8)² - m² = 32
(a-8+m)(a-8-m) = 32
①a-8-m=1 且 a-8+m=32 解不是整数
②a-8-m=2 且 a-8+m=16 解得 a=17
③a-8-m=4 且余卖姿 a-8+m=8 解得 a=14
④a-8-m= -32 且 a-8+m= -1 解配茄不是整数
⑤a-8-m= -16 且 a-8+m = -2 解得 a= -1(舍去)
⑥a-8-m= -8 且 a-8+m = -4 解得 a=2
当a = 17时,y² + 11y + 18 = 0 ,解得 y₁= - 2 ,y₂ = - 9
当a = 14时,y² + 8y + 15 = 0,解得 y₁ = -3,y₂ = - 5
当a = 2时,y² - 4y + 3 = 0 ,解得 y₁ = 1 ,y₂ = 3
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询