证明函数f(x)在X上有界的充分必要条件是它在X上既有上界又有下界???
2个回答
展开全部
必要性:
已知f(x)在X上有界,则存在M>0,使得任意x∈X,有|f(x)|<M
因此-M<f(x)<M,则f(x)既有上界又有下界。
充分性:
已知f(x)在X上既有上界又有下界,则存在a,b,且b>a,使得f(x)<b,且f(x)>a
(1)若|b|>|a|,则b>0,且-b<a成立,
因此-b<a<f(x)<b,得|f(x)|<b,因此f(x)有界。
(2)若|a|>|b|,则a<0,因此-a>0,得-a>b,
因此a<f(x)<b<-a,得|f(x)|<-a,得f(x)有界。
已知f(x)在X上有界,则存在M>0,使得任意x∈X,有|f(x)|<M
因此-M<f(x)<M,则f(x)既有上界又有下界。
充分性:
已知f(x)在X上既有上界又有下界,则存在a,b,且b>a,使得f(x)<b,且f(x)>a
(1)若|b|>|a|,则b>0,且-b<a成立,
因此-b<a<f(x)<b,得|f(x)|<b,因此f(x)有界。
(2)若|a|>|b|,则a<0,因此-a>0,得-a>b,
因此a<f(x)<b<-a,得|f(x)|<-a,得f(x)有界。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询