初三数学二次函数题
1抛物线y=x^2+bx+c与X轴只有一交点,交点为(2,0),b=c=2水流速度为am/min,每分钟进水量Q(m^3)与所选水管直径D(m)函数关系是要解答过程啊~...
1 抛物线y=x^2+bx+c与X轴只有一交点,交点为(2,0),b=
c=
2 水流速度为am/min,每分钟进水量Q(m^3)与所选水管直径
D(m)函数关系是
要解答过程啊~ 展开
c=
2 水流速度为am/min,每分钟进水量Q(m^3)与所选水管直径
D(m)函数关系是
要解答过程啊~ 展开
2个回答
展开全部
1
抛物线为y=ax^2+bx+c,则现在a=1
由抛物线对称轴公式x=-b/(2*a),现与X轴交点为(2,0),即对称轴为x=2=-b/(2*1) 则b=-4
又抛物线过点(2,0),将该点代入抛物线
0=2^2+(-4)*2+c,则c=4
故
b=-4
c=4
2
考虑长为a米一段水管,
水流速度为am/min,由速度定义,即在1分钟内流过的距离为a米,每分钟进水量Q即1分钟内该段水管的水的体积,所以本问题即一个底直径为D,高为a的圆柱体体积为Q
由圆柱体的体积公式为
体积=pi*(底直径/2)*(底直径/2)*高
故
Q=pi*(D/2)*(D/2)*a
pi为圆周率
抛物线为y=ax^2+bx+c,则现在a=1
由抛物线对称轴公式x=-b/(2*a),现与X轴交点为(2,0),即对称轴为x=2=-b/(2*1) 则b=-4
又抛物线过点(2,0),将该点代入抛物线
0=2^2+(-4)*2+c,则c=4
故
b=-4
c=4
2
考虑长为a米一段水管,
水流速度为am/min,由速度定义,即在1分钟内流过的距离为a米,每分钟进水量Q即1分钟内该段水管的水的体积,所以本问题即一个底直径为D,高为a的圆柱体体积为Q
由圆柱体的体积公式为
体积=pi*(底直径/2)*(底直径/2)*高
故
Q=pi*(D/2)*(D/2)*a
pi为圆周率
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询