lim x →∞ (x/x+1)∧x 求大神解下,多谢
2个回答
展开全部
解: lim(x->∞)[(x/(x+1))^x]
=lim(x->∞){[(1+(-1)/(x+1))^((x+1)/(-1))]^((-x)/(x+1))}
={lim(x->∞)[(1+(-1)/(x+1))^((x+1)/(-1))]}^[lim(x->∞)((-x)/(x+1))]
=e^[lim(x->∞)((-x)/(x+1))] (应用重要极限lim(z->0)[(1+z)^(1/z)]=e)
=e^[lim(x->∞)((-1)/(1+1/x))]
=e^[(-1)/(1+0)]
=1/e。
=lim(x->∞){[(1+(-1)/(x+1))^((x+1)/(-1))]^((-x)/(x+1))}
={lim(x->∞)[(1+(-1)/(x+1))^((x+1)/(-1))]}^[lim(x->∞)((-x)/(x+1))]
=e^[lim(x->∞)((-x)/(x+1))] (应用重要极限lim(z->0)[(1+z)^(1/z)]=e)
=e^[lim(x->∞)((-1)/(1+1/x))]
=e^[(-1)/(1+0)]
=1/e。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询