多元函数的连续性怎么证明?????
1个回答
展开全部
没有专门的一个公式或定理,但是我可以总结几个方法给你看看。
如果一个多元函数是连续的,那么一般的做法是这样:通过夹逼法,h(x)<f(x)<g(x),而h(x)与 g(x)的极限又是相等的,然后通过对比f(x)在某一点的函数值,最后得出结论是否相等。而一般的,这种题目往往是探求在(0,0)这一点的连续性,而又往往左边h(x)是0,右边g(x)也是趋于零的。而g(x)趋于零通常又是运用基本不等式对它进行放缩最后求得极限。
如果一个多元函数是不连续的,这种最开心了,为什么这么说呢,一般的你可以先设定变量间的关系,比如y = kx,y = kx^2等等,最后发现极限与k相关,k取不同的值极限也取不同的值,所以极限是不存在的。
不知我表达清楚了没有,若由疑问请追问哦
更多追问追答
追问
多元函数连续是不是也得证明左极限等于右极限等于函数值才连续啊
追答
那是当然
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |