拉格朗日乘数法怎么解?
4个回答
展开全部
第一个式子乘y,第二个式子成x,得到的两个新的式子相减消去λ
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
这么恶心的方程组你也做
更多追问追答
追问
考研呢,不看书嘛什么考啊,大哥
你会不会,帮个忙
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
在数学最优化问题中,拉格朗日乘数法(以数学家约瑟夫·路易斯·拉格朗日命名)是一种寻找变量受一个或多个条件所限制的多元函数的极值的方法。这种方法将一个有n 个变量与k 个约束条件的最优化问题转换为一个有n + k个变量的方程组的极值问题,其变量不受任何约束。
这种方法引入了一种新的标量未知数,即拉格朗日乘数:约束方程的梯度(gradient)的线性组合里每个向量的系数。此方法的证明牵涉到偏微分,全微分或链法,从而找到能让设出的隐函数的微分为零的未知数的值。
解题思路:
我们知道, 对于"限制条件为等式,x值均为正值"的最大化问题, 满足最大化的x组合一定满足:F(i)(x*)-Σλj Gj(i)(x*)=0, i=1,2,3,.....n, j=1,2,...m. 从这里我们看到,如果限制件 Gj(x*)=cj 中的 cj 变化 dcj , 如果全部作用于x(i),那么引起咐档隐的dx(i)=dcj/Gj(i)(x*),从而导致目标方程取值变化dF=F(i)(x*)dcj/Gj(i)(x*)=λj*dcj [注意:对于同一个限制条件j,我们由上一节已经知道必然有: F(i)(x*)/Gj(i)(x*)=F(i')(x*)/Gj(i')(x*)=λj (i不等于i')]。
那么我们得到:λj=dF/dcj.也就是说,拉格朗日乘数其实代表的是cj对最大化目标函数F的边际影响. 虽然这里考虑的是仅仅cj发生变化,我们可以对此加以推广,比如整体的c向量发生变化到 c+dc, dc是一个m-维向量, 那么F的总变化量dF就是Σλj dCj, j=1,2,...m。
举一个具体的实例: 假如一个计划经济体系下,政府实施如前所述的最大化问题(在有限资源如劳动力,自然矿产,人力资本等的限制下使社会整体效用/福利最大化),并已经找到了满足最大化条件的x组合. 假设万能的上帝允许该国的劳动力资源可以额外增加dc1, 那么根据拉格朗日乘数的经济学含义我们知道给整个社会带来的福利将是λ1*dc1。
但是上帝说:要获得这个额外的劳动力资源,你们必须以一定数量的其他资源比如土地来跟我交换,以示公平.那么我们人类政府该拿多少土地来跟上帝换呢?指定该土地数量为dx2,那么由此减少的社会福利是λ2*dc2. 如果λ1*dc1>λ2*dc2,上帝不会答应,如果反之我们不会答应.所以必然有λ1*dc1=λ2*dc2,也就是dc2=(λ1/λ2)dc1。
学过初级微观的朋友马上可以看出,这跟微观经济学中相对价格的概念十分相似.相对价格反映物与物之间的交换价值,即人们愿意怎么样进行物与物的交换.不同的是,这里的价格不是以钱来计算,而是以社会蠢燃福利来衡量;这里的相对价格λ1/λ2中的λ1和λ2是基于解决社会福利最大化问题而计算出来的,不同于市场中的价格P1,P2. 由于这个原因,我们把λ叫做"影子价格"(shadow price). 如果我们偶尔衡厅发现某个市场经济下市场价格之比恰恰等于影子价格之比,我们称这个市场被一双看不见的手所指引,因为该市场居然可以自发调整解决社会福利的最大化问题。
这种方法引入了一种新的标量未知数,即拉格朗日乘数:约束方程的梯度(gradient)的线性组合里每个向量的系数。此方法的证明牵涉到偏微分,全微分或链法,从而找到能让设出的隐函数的微分为零的未知数的值。
解题思路:
我们知道, 对于"限制条件为等式,x值均为正值"的最大化问题, 满足最大化的x组合一定满足:F(i)(x*)-Σλj Gj(i)(x*)=0, i=1,2,3,.....n, j=1,2,...m. 从这里我们看到,如果限制件 Gj(x*)=cj 中的 cj 变化 dcj , 如果全部作用于x(i),那么引起咐档隐的dx(i)=dcj/Gj(i)(x*),从而导致目标方程取值变化dF=F(i)(x*)dcj/Gj(i)(x*)=λj*dcj [注意:对于同一个限制条件j,我们由上一节已经知道必然有: F(i)(x*)/Gj(i)(x*)=F(i')(x*)/Gj(i')(x*)=λj (i不等于i')]。
那么我们得到:λj=dF/dcj.也就是说,拉格朗日乘数其实代表的是cj对最大化目标函数F的边际影响. 虽然这里考虑的是仅仅cj发生变化,我们可以对此加以推广,比如整体的c向量发生变化到 c+dc, dc是一个m-维向量, 那么F的总变化量dF就是Σλj dCj, j=1,2,...m。
举一个具体的实例: 假如一个计划经济体系下,政府实施如前所述的最大化问题(在有限资源如劳动力,自然矿产,人力资本等的限制下使社会整体效用/福利最大化),并已经找到了满足最大化条件的x组合. 假设万能的上帝允许该国的劳动力资源可以额外增加dc1, 那么根据拉格朗日乘数的经济学含义我们知道给整个社会带来的福利将是λ1*dc1。
但是上帝说:要获得这个额外的劳动力资源,你们必须以一定数量的其他资源比如土地来跟我交换,以示公平.那么我们人类政府该拿多少土地来跟上帝换呢?指定该土地数量为dx2,那么由此减少的社会福利是λ2*dc2. 如果λ1*dc1>λ2*dc2,上帝不会答应,如果反之我们不会答应.所以必然有λ1*dc1=λ2*dc2,也就是dc2=(λ1/λ2)dc1。
学过初级微观的朋友马上可以看出,这跟微观经济学中相对价格的概念十分相似.相对价格反映物与物之间的交换价值,即人们愿意怎么样进行物与物的交换.不同的是,这里的价格不是以钱来计算,而是以社会蠢燃福利来衡量;这里的相对价格λ1/λ2中的λ1和λ2是基于解决社会福利最大化问题而计算出来的,不同于市场中的价格P1,P2. 由于这个原因,我们把λ叫做"影子价格"(shadow price). 如果我们偶尔衡厅发现某个市场经济下市场价格之比恰恰等于影子价格之比,我们称这个市场被一双看不见的手所指引,因为该市场居然可以自发调整解决社会福利的最大化问题。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询