阅读下列材料:1×2=13(1×2×3-0×1×2),2×3=13(2×3×4-1×2×3),3×4=13(3×4×5-2×3×4),

阅读下列材料:1×2=13(1×2×3-0×1×2),2×3=13(2×3×4-1×2×3),3×4=13(3×4×5-2×3×4),由以上三个等式相加,可得:1×2+2... 阅读下列材料:1×2=13(1×2×3-0×1×2),2×3=13(2×3×4-1×2×3),3×4=13(3×4×5-2×3×4),由以上三个等式相加,可得:1×2+2×3+3×4=13×3×4×5=20.读完以上材料,请你计算下列各题:(1)1×2+2×3+3×4+…+10×11(写出过程);(2)1×2+2×3+3×4+…+n×(n+1)=______;(3)1×2×3+2×3×4+3×4×5+…+7×8×9=______. 展开
 我来答
太觅白1681
推荐于2016-05-28 · 超过56用户采纳过TA的回答
知道答主
回答量:114
采纳率:100%
帮助的人:51.2万
展开全部
1×2=
1
3
(1×2×3-0×1×2);
2×3=
1
3
(2×3×4-1×2×3);
3×4=
1
3
(3×4×5-2×3×4);

10×11=
1
3
(10×11×12-9×10×11);

n×(n+1)=
1
3
[n×(n+1)×(n+2)-(n-1)×n×(n+1)].
(1)1×2+2×3+3×4+…+10×11
=
1
3
(1×2×3-0×1×2)+
1
3
(2×3×4-1×2×3)+
1
3
(3×4×5-2×3×4)+…+
1
3
(10×11×12-9×10×11)
=
1
3
(10×11×12)=440;

(2)1×2+2×3+3×4+…+n×(n+1)
=
1
3
(1×2×3-0×1×2)+
1
3
(2×3×4-1×2×3)+
1
3
(3×4×5-2×3×4)+…+
1
3
[n×(n+1)×(n+2)-(n-1)×n×(n+1)]=
1
3
[n×(n+1)×(n+2)];

(3)1×2×3=
1
4
(1×2×3×4-0×1×2×3);
2×3×4=
1
4
(2×3×4×5-1×2×3×4);
3×4×5=
1
4
(3×4×5×6-2×3×4×5);

7×8×9=
1
4
(7×8×9×10-6×7×8×9);
∴1×2×3+2×3×4+3×4×5+…+7×8×9
=
1
4
(1×2×3×4-0×1×2×3)+
1
4
(2×3×4×5-1×2×3×4)+
1
4
(3×4×5×6-2×3×4×5)+…+
1
4
(7×8×9×10-6×7×8×9);
=
1
4
(7×8×9×10)=1260.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式