为什么正定矩阵一定和单位矩阵合同啊?怎么证明?
展开全部
这个就是这么规定的,解释也意义不大,就当常识记住吧。
扩展资料:数学[英语:mathematics,源自古希腊语μθημα(máthēma);经常被缩写为math或maths],是研究数量、结构、变化、空间以及信息等概念的一门学科。数学是人类对事物的抽象结构与模式进行严格描述的一种通用手段,可以应用于现实世界的任何问题,所有的数学对象本质上都是人为定义的。从这个意义上,数学属于形式科学,而不是自然科学。不同的数学家和哲学家对数学的确切范围和定义有一系列的看法。
展开全部
正定矩阵A的特征值都是正的, 可相似对角化成 diag(a1,a2,...,an), ai>0.
即存在正交矩阵P, 使 P'AP = diag(a1,a2,...,an)
取 C = diag( 1/√a1,1/√a2,...,1/√an)
则有 C'P'APC = C'diag(a1,a2,...,an)C = E
即 (PC)'A(PC) = E
即存在正交矩阵P, 使 P'AP = diag(a1,a2,...,an)
取 C = diag( 1/√a1,1/√a2,...,1/√an)
则有 C'P'APC = C'diag(a1,a2,...,an)C = E
即 (PC)'A(PC) = E
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
引用司渊子術的回答:
正定矩阵A的特征值都是正的, 可相似对角化成 diag(a1,a2,...,an), ai>0.
即存在正交矩阵P, 使 P'AP = diag(a1,a2,...,an)
取 C = diag( 1/√a1,1/√a2,...,1/√an)
则有 C'P'APC = C'diag(a1,a2,...,an)C = E
即 (PC)'A(PC) = E
正定矩阵A的特征值都是正的, 可相似对角化成 diag(a1,a2,...,an), ai>0.
即存在正交矩阵P, 使 P'AP = diag(a1,a2,...,an)
取 C = diag( 1/√a1,1/√a2,...,1/√an)
则有 C'P'APC = C'diag(a1,a2,...,an)C = E
即 (PC)'A(PC) = E
展开全部
倒数第二步错了,应该是转置不是逆,逆的话结果还是原来的对角阵没变
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2015-07-31
展开全部
我晕→_→你考研吗
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询