已知如图,平行四边形ABCD中,E,F分别是AB,CD的中点,连接AF,CE
已知如图,平行四边形ABCD中,E,F分别是AB,CD的中点,连接AF,CE(1)试说明:△BEC全等△DFA(2)连接AC,若CA=CB判断四边形AECF是什么特殊四边...
已知如图,平行四边形ABCD中,E,F分别是AB,CD的中点,连接AF,CE(1)试说明:△BEC全等△DFA(2)连接AC,若CA=CB判断四边形AECF是什么特殊四边形?请证明。过程加理由,详细点,谢谢
展开
2个回答
展开全部
(1)证明:∵四边形ABCD是平行四边形,
∴BC=AD,∠B=∠D,AB=CD,
∵E、F分别是AB、CD的中点,
∴BE=DF=AE=CF,
在△BEC和△DFA中,
BE=DF,∠B=∠D,BC=AD,
∴△BEC≌△DFA.
(2)答:四边形AECF是矩形.
证明:∵四边形ABCD是平行四边形,
∴AB∥CD,
∵AE=CF,
∴四边形AECF是平行四边形,
∵AC=BC,E是AB的中点,
∴CE⊥AB,
∴∠AEC=90°,
∴平行四边形AECF是矩形.
∴BC=AD,∠B=∠D,AB=CD,
∵E、F分别是AB、CD的中点,
∴BE=DF=AE=CF,
在△BEC和△DFA中,
BE=DF,∠B=∠D,BC=AD,
∴△BEC≌△DFA.
(2)答:四边形AECF是矩形.
证明:∵四边形ABCD是平行四边形,
∴AB∥CD,
∵AE=CF,
∴四边形AECF是平行四边形,
∵AC=BC,E是AB的中点,
∴CE⊥AB,
∴∠AEC=90°,
∴平行四边形AECF是矩形.
创远信科
2024-07-24 广告
2024-07-24 广告
矢量网络分析 (VNA) 是最重要的射频和微波测量方法之一。 创远信科提供广泛的多功能、高性能网络分析仪(最高40GHz)和标准多端口解决方案。创远信科的矢量网络分析仪非常适用于分析无源及有源器件,比如滤波器、放大器、混频器及多端口模块。 ...
点击进入详情页
本回答由创远信科提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询