已知等差数列{an}公差为d,满足a1+a2+a3=15,且a1+1,a3+1,a7+1构成等你数列的连续三项
(1)求数列{an}的通项公式(2)若等差数列{an}递增,其前n项和为Tn,求证1/3=<(1/T1)+(1/T2)+……+(1/Tn)<3/4...
(1)求数列{an}的通项公式
(2)若等差数列{an}递增,其前n项和为Tn,求证1/3=<(1/T1)+(1/T2)+……+(1/Tn)<3/4 展开
(2)若等差数列{an}递增,其前n项和为Tn,求证1/3=<(1/T1)+(1/T2)+……+(1/Tn)<3/4 展开
1个回答
2012-11-04 · 知道合伙人教育行家
关注
展开全部
题目中的等你数列也许是等比数列是吗?
(1)a1+a2+a3=3a2=15, a2=5, 设公差为d , a1=5-d, a3=5+d, a7=5+5d
(a3+1)^2=(a1+1)(a7+1) 所以(6+d)^2=(6-d)(6+5d), 解得 d=2 或d=0
当d=2时, an=2n+1, 当d=0时, an=5
(2)an=2n+1, Tn=(3+2n+1)*n/2=(n+2)*n
1/Tn=1/(n+2)*n=1/2[1/n-1/(n+2)],设求证式的中间一式为M
M=1/2[1-1/3
+1/2-1/4
+1/3-1/5
+1/4-1/6
+.....
+1/(n-1)-1/(n+1)
+1/n-1/(n+2)]=1/2[1+1/2-1/(n+1)-1/(n+2)]=3/4-1/2[1/(n+1)+1/(n+2)], 很明显,M<3/4
1/(n+1)<=1/2, 1/(n+2)<=1/3, 所以1/(n+1)+1/(n+2)<=5/6
M=>3/4-1/2*5/6=1/3
综上1/3<=M<3/4
(1)a1+a2+a3=3a2=15, a2=5, 设公差为d , a1=5-d, a3=5+d, a7=5+5d
(a3+1)^2=(a1+1)(a7+1) 所以(6+d)^2=(6-d)(6+5d), 解得 d=2 或d=0
当d=2时, an=2n+1, 当d=0时, an=5
(2)an=2n+1, Tn=(3+2n+1)*n/2=(n+2)*n
1/Tn=1/(n+2)*n=1/2[1/n-1/(n+2)],设求证式的中间一式为M
M=1/2[1-1/3
+1/2-1/4
+1/3-1/5
+1/4-1/6
+.....
+1/(n-1)-1/(n+1)
+1/n-1/(n+2)]=1/2[1+1/2-1/(n+1)-1/(n+2)]=3/4-1/2[1/(n+1)+1/(n+2)], 很明显,M<3/4
1/(n+1)<=1/2, 1/(n+2)<=1/3, 所以1/(n+1)+1/(n+2)<=5/6
M=>3/4-1/2*5/6=1/3
综上1/3<=M<3/4
追问
是等比数列,字打错了
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询