初三 二次函数 动点问题

在平面直角坐标系xOy中,抛物线y=x平方+4x=3与轴交于A、B两点(A左B右),与y轴正半轴交于点C(0,3),点A坐标为(-3,0)B(-1,0),角COA=45度... 在平面直角坐标系xOy中,抛物线y=x平方+4x=3与轴交于A、B两点(A左B右),与y轴正半轴交于点C(0,3),点A坐标为(-3,0)B(-1,0),角COA=45度,且抛物线对称轴是直线x=-2
1、如果点P是线段AC上一点,过点P做X轴的垂线交抛物线于点E,问点P位于何处是,PE长度最长,并求出此时P点坐标和三角形APE的面积
2、设圆Q半径为1,圆心Q在抛物线上运动,则在运动过程中是否存在圆Q与坐标轴相切的情况?若存在求出Q坐标,不存在说明理由。并探究若设圆Q半径为r,圆心Q在抛物线上运动,则当r取何值时,圆Q与两坐标轴相切。
展开
匿名用户
2014-01-10
展开全部
(1)解:(1)∵y=kx+b沿y轴向下平移3个单位后恰好经过原点,
∴b=3,C(0,3).
将A(-3,0)代入y=kx+3,
得-3k+3=0.
解得k=1.
∴直线AC的函数表达式为y=x+3.
∵抛物线的对称轴是直线x=-2
∴ ,
解得 ;
∴抛物线的函数表达式为y=x2+4x+3;
(2)如图,过点B作BD⊥AC于点D.

∵S△ABP:S△BPC=2:3,

∴|AP|:|PC|=2:3.
过点P作PE⊥x轴于点E,
∵PE∥CO,
∴△APE∽△ACO,
∴ ,

∴ ,
解得
∴点P的坐标为 ;
(3)(Ⅰ)假设⊙Q在运动过程中,存在⊙Q与坐标轴相切的情况.
设点Q的坐标为(x0,y0).
①当⊙Q与y轴相切时,有|x0|=1,即x0=±1.
当x0=-1时,得y0=(-1)2+4×(-1)+3=0,∴Q1(-1,0)
当x0=1时,得y0=12+4×1+3=8,∴Q2(1,8)
②当⊙Q与x轴相切时,有|y0|=1,即y0=±1
当y0=-1时,得-1=x02+4x0+3,
即x02+4x0+4=0,解得x0=-2,
∴Q3(-2,-1)
当y0=1时,得1=x02+4x0+3,
即x02+4x0+2=0,解得 ,
∴ , .
综上所述,存在符合条件的⊙Q,其圆心Q的坐标分别为Q1(-1,0),Q2(1,8),Q3(-2,-1), , .
(Ⅱ)设点Q的坐标为(x0,y0).
当⊙Q与两坐标轴同时相切时,有y0=±x0.
由y0=x0,得x02+4x0+3=x0,即x02+3x0+3=0,
∵△=32-4×1×=-3<0
∴此方程无解.
由y0=-x0,得x02+4x0+3=-x0,
即x02+5x0+3=0,
解得
∴当⊙Q的半径 时,⊙Q与两坐标轴同时相切.(12分) 这是标准答案,不知能否看懂?
匿名用户
2014-01-10
展开全部
(1)求出AC的函数解析式Y=X+3
PE=P纵坐标-E纵坐标 设P(X,X+3) E(X,X�0�5+4X+3)
PE=-X�0�5-3X 当X=-3/2时最大 把-3/2代入AC即可
面积用底乘高除2应该很好算 (PE×2/2)
(2)这只要理解清楚就好做了,圆Q与坐标轴相切的意思就是圆心Q到坐标轴的距离等于半径。
当r=1时 ,令X=±1,代入抛物线,解出两个交点坐标,若其纵坐标为±1,则证明这个点可以是圆心坐标
若圆半径为r,则令X=±r,带入抛物线,令其值分别为±r,用方程判别式解就可以了。

应该差不多就是这样,我大概看了一下,想的很仓促,可能有错误或不周到的地方,谅解啊~实在不理解 加我Q
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
匿名用户
2014-01-10
展开全部
好久没学了额
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
匿名用户
2014-01-10
展开全部
y=x平方+4x=3?
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
匿名用户
2014-01-10
展开全部
有图吗?
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
收起 更多回答(3)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式