已知sin(θ+kπ)=-2cos(θ+kπ),k∈Z,求4sinθ-2cosθ/5cosθ+3sinθ
1个回答
展开全部
由已知条件sin(θ+kπ)=-2cos(θ+kπ),k∈Z,
若k为偶数,由
诱导公式
知sin(θ+kπ)=sinθ;cos(θ+kπ)=cosθ;
若k为奇数,由诱导公式知sin(θ+kπ)=-sinθ;cos(θ+kπ)=-cosθ;
因此,我们有sinθ=-2cosθ
(1)将sinθ=-2cosθ
代入4sinθ-2cosθ/5cosθ+3sinθ=10
(2)由sinθ=-2cosθ,以及sin²θ+cos²θ
=1,可知sin²θ=4/5;cos²θ=1/5
因此sin²θ+2/5cos²θ
=22/25
若k为偶数,由
诱导公式
知sin(θ+kπ)=sinθ;cos(θ+kπ)=cosθ;
若k为奇数,由诱导公式知sin(θ+kπ)=-sinθ;cos(θ+kπ)=-cosθ;
因此,我们有sinθ=-2cosθ
(1)将sinθ=-2cosθ
代入4sinθ-2cosθ/5cosθ+3sinθ=10
(2)由sinθ=-2cosθ,以及sin²θ+cos²θ
=1,可知sin²θ=4/5;cos²θ=1/5
因此sin²θ+2/5cos²θ
=22/25
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询