已知三阶实对称矩阵A的三个特征值为λ1=2,λ2=λ3=1,且对应于λ2,λ3的特征向量为:α2=(1,1,-1)^T

α3=(2,3,-3)^T(1)求A的与λ1=2所对应的特征向量(2)求矩阵A... α3=(2,3,-3)^T
(1)求A的与λ1=2所对应的特征向量
(2)求矩阵A
展开
匿名用户
2012-11-11
展开全部
(1)设λ1=2所对应的特征向量α1=(x1,x2,x3)^T
因为实对称矩阵的属于不同特征值的特征向量相互正交,
则可列的方程组:
x1+x2-x3=0
2x1+3x2-3x3=0
解此方程组可得基础解系α1=(0,1,1)^T
(2)现在我们有
A(α1,α2,α3)=(λ1α1,λ2α2,λ3α3)
A=(λ1α1,λ2α2,λ3α3)(α1,α2,α3)^(-1)
将各个向量带入,后面计算量可能会比较大
完毕
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式