推荐于2016-10-21 · 知道合伙人教育行家
关注
展开全部
f(x) = (1-2^x)/(2^x+1) = {-(2^x+1)+2}/(2^x+1) = -2 + 2/(2^x+1)
2^x单调增
2^x+1单调增
2/(2^x+1)单调减
f(x) = -2 + 2/(2^x+1)为减函数
证明:
令x1<x2
f(x2) - f(x1)
= {-2 + 2/(2^x2+1)} - {-2 + 2/(2^x1+1)}
= 2/(2^x2+1) - 2/(2^x1+1)
= 2(2^x1+1-2^x2-1)/{(2^x2+1) (2^x1+1)}
= 2(2^x1-2^x2)/{(2^x2+1) (2^x1+1)}
∵2^x2+1 >1; 2^x1+1>1; 2^x1-2^x2<0
∴f(x2) - f(x1) = 2(2^x1-2^x2)/{(2^x2+1) (2^x1+1)} <0
∴f(x2) < f(x1) ,得证。
2^x单调增
2^x+1单调增
2/(2^x+1)单调减
f(x) = -2 + 2/(2^x+1)为减函数
证明:
令x1<x2
f(x2) - f(x1)
= {-2 + 2/(2^x2+1)} - {-2 + 2/(2^x1+1)}
= 2/(2^x2+1) - 2/(2^x1+1)
= 2(2^x1+1-2^x2-1)/{(2^x2+1) (2^x1+1)}
= 2(2^x1-2^x2)/{(2^x2+1) (2^x1+1)}
∵2^x2+1 >1; 2^x1+1>1; 2^x1-2^x2<0
∴f(x2) - f(x1) = 2(2^x1-2^x2)/{(2^x2+1) (2^x1+1)} <0
∴f(x2) < f(x1) ,得证。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询